Олимпиадные задачи из источника «весенний тур, основной вариант, 8-9 класс» для 5-10 класса - сложность 1-4 с решениями

Круг разбит на <i>n</i> секторов, в некоторых секторах стоят фишки – всего фишек  <i>n</i> + 1.  Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято.

Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?

Точка <i>P</i> лежит на описанной окружности треугольника <i>ABC</i>. Построим треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>, стороны которого параллельны отрезкам <i>PA, PB, PC</i>

(<i>B</i><sub>1</sub><i>C</i><sub>1</sub> || <i>PA,  C</i><sub>1</sub><i>A</i><sub>1</sub> || <i>PB,  A</i><sub>1</sub><i>B</i><sub>1</sub> || <i>PC</i>). Через точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> проведены прямые, пар...

Пусть <i>m, n</i> и <i>k</i> – натуральные числа, причём  <i>m > n</i>.  Какое из двух чисел больше:   <img align="absmiddle" src="/storage/problem-media/98129/problem_98129_img_2.gif">   или   <img align="absmiddle" src="/storage/problem-media/98129/problem_98129_img_3.gif"> (В каждом выражении <i>k</i> знаков квадратного корня, <i>m</i> и <i>n</i> чередуются.)

Пусть в прямоугольном треугольнике <i>AB</i> и <i>AC</i> – катеты,  <i>AC > AB</i>.  На <i>AC</i> выбрана точка <i>E</i>, а на <i>BC</i> – точка <i>D</i> так, что  <i>AB = AE = BD</i>.

Докажите, что треугольник <i>ADE</i> прямоугольный тогда и только тогда, когда стороны треугольника <i>ABC</i> относятся как  3 : 4 : 5.

<i>n</i> чисел  (<i>n</i> > 1)  называются <i>близкими</i>, если каждое из них меньше чем сумма всех чисел, делённая на  <i>n</i> – 1.  Пусть  <i>a, b, c, ...   – n</i> близких чисел, <i>S</i> – их сумма. Докажите, что

  а) все они положительны;

  б)  <i>a + b > c</i>;

  в)  <i>a + b > <sup>S</sup></i>/<sub><i>n</i>–1</sub>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка