Олимпиадные задачи из источника «12 турнир (1990/1991 год)» для 4-6 класса - сложность 2 с решениями
12 турнир (1990/1991 год)
НазадДоска 100×100 разбита на 10000 единичных квадратиков. Один из них вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так, чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и чтобы треугольники не налегали друг на друга и не свисали с доски?
Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма делится на каждое из них.