Олимпиадные задачи из источника «осенний тур, основной вариант, 10-11 класс» для 8 класса
осенний тур, основной вариант, 10-11 класс
НазадНа основании <i>AB</i> равнобедренного треугольника <i>ABC</i> выбрана точка <i>D</i> так, что окружность, вписанная в треугольник <i>BCD</i>, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков <i>CA</i> и <i>CD</i> и отрезка <i>AD</i> (вневписанная окружность треугольника <i>ACD</i>). Докажите, что этот радиус равен одной четверти высоты треугольника <i>ABC</i>, опущенной на его боковую сторону.
На дуге <i>AC</i> описанной окружности правильного треугольника <i>ABC</i> взята точка <i>M</i>, отличная от <i>C</i>, <i>P</i> – середина этой дуги. Пусть <i>N</i> – середина хорды <i>BM, K</i> – основание перпендикуляра, опущенного из точки <i>P</i> на <i>MC</i>. Докажите, что треугольник <i>ANK</i> правильный.
Рассматривается конечное множество <i>M</i> единичных квадратов на плоскости. Их стороны параллельны осям координат (разрешается, чтобы квадраты пересекались). Известно, что для любой пары квадратов расстояние между их центрами не больше 2. Докажите, что существует единичный квадрат (не обязательно из множества <i>M</i>) со сторонами, параллельными осям, пересекающийся хотя бы по точке с каждым квадратом множества <i>M</i>.
Дано:
<img align="absmiddle" src="/storage/problem-media/98065/problem_98065_img_2.gif">
Докажите, что <img align="absmiddle" src="/storage/problem-media/98065/problem_98065_img_3.gif">