Олимпиадные задачи из источника «XIV Олимпиада по геометрии имени И.Ф. Шарыгина (2018 г.)» для 7-11 класса - сложность 3 с решениями
XIV Олимпиада по геометрии имени И.Ф. Шарыгина (2018 г.)
НазадЧетырехугольник $ABCD$ описан вокруг окружности радиуса $1$. Найдите наибольшее возможное значение величины $\frac1{AC^2}+\frac1{BD^2}$.
В окружности $\omega$, описанной около треугольника $ABC$, хорда $KL$ проходит через середину $M$ отрезка $AB$ и перпендикулярна ей. Некоторая окружность проходит через точки $L$ и $M$ и пересекает отрезок $CK$ в точках $P$ и $Q$ ($Q$ лежит на отрезке $KP$). Пусть $LQ$ пересекает описанную окружность треугольника $KMQ$ в точке $R$. Докажите, что четырехугольник $APBR$ вписанный.
В угол с вершиной $C$ вписана окружность $\omega$. Рассматриваются окружности, проходящие через $C$, касающиеся $\omega$ внешним образом и пересекающие стороны угла в точках $A$ и $B$. Докажите, что периметры всех треугольников $ABC$ равны.
Правильный $n$-угольник со стороной 1 вращается вокруг другого такого же $n$-угольника, как показано на рисунке. Последовательные положения одной из его вершин в моменты, когда $n$-угольники имеют общую сторону, образуют замкнутую ломаную $\kappa$.<img src="/storage/problem-media/66681/problem_66681_img_2.png"> Докажите, что $\kappa$ ограничивает площадь, равную $6A - 2B$, где $A$, $B$ – площади правильных $n$-угольников с единичными стороной и радиусом описанной окружности соответственно.
К описанной окружности треугольника $ABC$ проведены касательные в точках $B$ и $C$. Лучи $CC_1$, $BB_1$, где $B_1$ и $C_1$ – середины сторон $AC$ и $AB$, пересекают эти касательные в точках $K$ и $L$ соответственно. Докажите, что $\angle BAK=\angle CAL$.
Дан описанный четырёхугольник $ABCD$. Докажите, что точка пересечения диагоналей, центр вписанной окружности треугольника $ABC$ и центр вневписанной окружности треугольника $CDA$, касающейся стороны $AC$ лежат на одной прямой.
Четырехугольник $ABCD$ вписан в окружность. $BL$ и $CN$ – биссектрисы треугольников $ABD$ и $ACD$ соответственно. Окружности, описанные вокруг треугольников $ABL$ и $CDN$, пересекаются в точках $P$ и $Q$. Докажите, что прямая $PQ$ проходит через середину дуги $AD$, не содержащей точку $B$.
Дана окружность $\omega$ и ее хорда $BC$. Точка $A$ движется по большей из дуг $BC$. Пусть $H$ – ортоцентр треугольника $ABC$, $D$, $E$ – такие точки на сторонах $AB$, $AC$, что $H$ – середина отрезка $DE$, $O_A$ – центр описанной окружности треугольника $ADE$. Докажите, что все точки $O_A$ лежат на одной окружности.
Вершины треугольника $DEF$ лежат на разных сторонах треугольника $ABC$. Касательные, проведенные из центра вписанной в треугольник $DEF$ окружности к вневписанным окружностям треугольника $ABC$, равны. Докажите, что $4S_{DEF} \ge S_{ABC}$.
Дан треугольник $ABC$ и окружность $\gamma$ с центром в точке $A$, которая пересекает стороны $AB$ и $AC$. Пусть общая хорда описанной окружности треугольника и окружности $\gamma$ пересекает стороны $AB$ и $AC$ в точках $X$ и $Y$ соответственно. Отрезки $CX$ и $BY$ пересекают $\gamma$ в точках $S$ и $T$ соответственно. Описанные окружности треугольников $ACT$ и $BAS$ пересекаются в точках $A$ и $P$. Докажите, что прямые $CX$, $BY$, и $AP$ пересекаются в одной точке.
В треугольнике $ABC$ $I$ – центр вписанной окружности, $D$ – произвольная точка на стороне $BC$, серединный перпендикуляр к отрезку $AD$ пресекает прямые $BI$ и $CI$ в точках $F$ и $E$ соответственно. Найдите геометрическое место ортоцентров треугольников $EIF$.
Окружности $\omega_1$, $\omega_2$ с центрами $O_1$, $O_2$ соответственно лежат одна вне другой. На этих окружностях взяты точки $C_1$, $C_2$, лежащие по одну сторону от прямой $O_1O_2$. Луч $O_1C_1$ пересекает $\omega_2$ в точках $A_2$, $B_2$, а луч $O_2C_2$ пересекает $\omega_1$ в точках $A_1$, $B_1$. Докажите, что $\angle A_1O_1B_1=\angle A_2B_2C_2$ тогда и только тогда, когда $C_1C_2\parallel O_1O_2$.
Найдите все такие конфигурации из шести точек общего положения на плоскости, что треугольник, образованный любыми тремя из них, равен треугольнику, образованному тремя остальными.
Кристалл пирита представляет собой параллелепипед, на каждую грань которого нанесена штриховка.<img src="/storage/problem-media/66665/problem_66665_img_2.png">На любых двух соседних гранях штриховка перпендикулярна. Существует ли выпуклый многогранник с числом граней, не равным $6$, грани которого можно заштриховать аналогичным образом?
Имеется треугольник $ABC$ и линейка, на которой отмечены отрезки, равные сторонам треугольника. Постройте этой линейкой ортоцентр треугольника, образованного точками касания вписанной в треугольник $ABC$ окружности.
В треугольнике $ABC$, где $AB < BC$, биссектриса угла $C$ пересекает в точке $P$ прямую, параллельную $AC$ и проходящую через вершину $B$, а в точке $R$ – касательную из вершины $B$ к описанной окружности треугольника. Точка $R'$ симметрична $R$ относительно $AB$. Докажите, что $\angle R'PB = \angle RPA$.
Постройте треугольник по точке Нагеля, вершине $B$ и основанию высоты, проведенной из этой вершины.
Пусть $E$ – одна из двух точек пересечения окружностей $\omega_1$ и $\omega_2$. Пусть $AB$ – общая внешняя касательная этих окружностей, прямая $CD$ параллельна $AB$, причем точки $A$ и $C$ лежат на $\omega_1$, а точки $B$ и $D$ – на $\omega_2$. Окружности $ABE$ и $CDE$ повторно пересекаются в точке $F$. Докажите, что $F$ делит одну из дуг $CD$ окружности $CDE$ пополам.