Олимпиадные задачи из источника «8 класс»

В треугольнике $ABC$ $I$ – центр вписанной окружности, $D$ – произвольная точка на стороне $BC$, серединный перпендикуляр к отрезку $AD$ пресекает прямые $BI$ и $CI$ в точках $F$ и $E$ соответственно. Найдите геометрическое место ортоцентров треугольников $EIF$.

Окружности $\omega_1$, $\omega_2$ с центрами $O_1$, $O_2$ соответственно лежат одна вне другой. На этих окружностях взяты точки $C_1$, $C_2$, лежащие по одну сторону от прямой $O_1O_2$. Луч $O_1C_1$ пересекает $\omega_2$ в точках $A_2$, $B_2$, а луч $O_2C_2$ пересекает $\omega_1$ в точках $A_1$, $B_1$. Докажите, что $\angle A_1O_1B_1=\angle A_2B_2C_2$ тогда и только тогда, когда $C_1C_2\parallel O_1O_2$.

В четырехугольниках $ABCD$ и $A_1B_1C_1D_1$ равны соответствующие углы. Кроме того, $AB=A_1B_1$, $AC=A_1C_1$, $BD=B_1D_1$. Обязательно ли четырехугольники $ABCD$ и $A_1B_1C_1D_1$ равны?

На стороне $AB$ квадрата $ABCD$ вне его построен равнобедренный треугольник $ABE$ ($AE=BE$). Пусть $M$ – середина $AE$, $O$ – точка пересечения $AC$ и $BD$, $K$ – точка пересечения $ED$ и $OM$. Докажите, что $EK=KO$.

Найдите все такие конфигурации из шести точек общего положения на плоскости, что треугольник, образованный любыми тремя из них, равен треугольнику, образованному тремя остальными.

В треугольнике $ABC$ угол $A$ равен $60^{\circ}$, $AA'$, $BB'$, $CC'$ – биссектрисы. Докажите, что $\angle B'A'C'\leq 60^{\circ}$.

Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны.

В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка