Олимпиадные задачи из источника «XIV Олимпиада по геометрии имени И.Ф. Шарыгина (2018 г.)» для 10-11 класса - сложность 3 с решениями
XIV Олимпиада по геометрии имени И.Ф. Шарыгина (2018 г.)
НазадЧетырехугольник $ABCD$ описан вокруг окружности радиуса $1$. Найдите наибольшее возможное значение величины $\frac1{AC^2}+\frac1{BD^2}$.
В окружности $\omega$, описанной около треугольника $ABC$, хорда $KL$ проходит через середину $M$ отрезка $AB$ и перпендикулярна ей. Некоторая окружность проходит через точки $L$ и $M$ и пересекает отрезок $CK$ в точках $P$ и $Q$ ($Q$ лежит на отрезке $KP$). Пусть $LQ$ пересекает описанную окружность треугольника $KMQ$ в точке $R$. Докажите, что четырехугольник $APBR$ вписанный.
В угол с вершиной $C$ вписана окружность $\omega$. Рассматриваются окружности, проходящие через $C$, касающиеся $\omega$ внешним образом и пересекающие стороны угла в точках $A$ и $B$. Докажите, что периметры всех треугольников $ABC$ равны.
Правильный $n$-угольник со стороной 1 вращается вокруг другого такого же $n$-угольника, как показано на рисунке. Последовательные положения одной из его вершин в моменты, когда $n$-угольники имеют общую сторону, образуют замкнутую ломаную $\kappa$.<img src="/storage/problem-media/66681/problem_66681_img_2.png"> Докажите, что $\kappa$ ограничивает площадь, равную $6A - 2B$, где $A$, $B$ – площади правильных $n$-угольников с единичными стороной и радиусом описанной окружности соответственно.
К описанной окружности треугольника $ABC$ проведены касательные в точках $B$ и $C$. Лучи $CC_1$, $BB_1$, где $B_1$ и $C_1$ – середины сторон $AC$ и $AB$, пересекают эти касательные в точках $K$ и $L$ соответственно. Докажите, что $\angle BAK=\angle CAL$.
Дан описанный четырёхугольник $ABCD$. Докажите, что точка пересечения диагоналей, центр вписанной окружности треугольника $ABC$ и центр вневписанной окружности треугольника $CDA$, касающейся стороны $AC$ лежат на одной прямой.
Четырехугольник $ABCD$ вписан в окружность. $BL$ и $CN$ – биссектрисы треугольников $ABD$ и $ACD$ соответственно. Окружности, описанные вокруг треугольников $ABL$ и $CDN$, пересекаются в точках $P$ и $Q$. Докажите, что прямая $PQ$ проходит через середину дуги $AD$, не содержащей точку $B$.
Дана окружность $\omega$ и ее хорда $BC$. Точка $A$ движется по большей из дуг $BC$. Пусть $H$ – ортоцентр треугольника $ABC$, $D$, $E$ – такие точки на сторонах $AB$, $AC$, что $H$ – середина отрезка $DE$, $O_A$ – центр описанной окружности треугольника $ADE$. Докажите, что все точки $O_A$ лежат на одной окружности.
Вершины треугольника $DEF$ лежат на разных сторонах треугольника $ABC$. Касательные, проведенные из центра вписанной в треугольник $DEF$ окружности к вневписанным окружностям треугольника $ABC$, равны. Докажите, что $4S_{DEF} \ge S_{ABC}$.
Дан треугольник $ABC$ и окружность $\gamma$ с центром в точке $A$, которая пересекает стороны $AB$ и $AC$. Пусть общая хорда описанной окружности треугольника и окружности $\gamma$ пересекает стороны $AB$ и $AC$ в точках $X$ и $Y$ соответственно. Отрезки $CX$ и $BY$ пересекают $\gamma$ в точках $S$ и $T$ соответственно. Описанные окружности треугольников $ACT$ и $BAS$ пересекаются в точках $A$ и $P$. Докажите, что прямые $CX$, $BY$, и $AP$ пересекаются в одной точке.
Кристалл пирита представляет собой параллелепипед, на каждую грань которого нанесена штриховка.<img src="/storage/problem-media/66665/problem_66665_img_2.png">На любых двух соседних гранях штриховка перпендикулярна. Существует ли выпуклый многогранник с числом граней, не равным $6$, грани которого можно заштриховать аналогичным образом?
Имеется треугольник $ABC$ и линейка, на которой отмечены отрезки, равные сторонам треугольника. Постройте этой линейкой ортоцентр треугольника, образованного точками касания вписанной в треугольник $ABC$ окружности.
В треугольнике $ABC$, где $AB < BC$, биссектриса угла $C$ пересекает в точке $P$ прямую, параллельную $AC$ и проходящую через вершину $B$, а в точке $R$ – касательную из вершины $B$ к описанной окружности треугольника. Точка $R'$ симметрична $R$ относительно $AB$. Докажите, что $\angle R'PB = \angle RPA$.
Постройте треугольник по точке Нагеля, вершине $B$ и основанию высоты, проведенной из этой вершины.
Пусть $E$ – одна из двух точек пересечения окружностей $\omega_1$ и $\omega_2$. Пусть $AB$ – общая внешняя касательная этих окружностей, прямая $CD$ параллельна $AB$, причем точки $A$ и $C$ лежат на $\omega_1$, а точки $B$ и $D$ – на $\omega_2$. Окружности $ABE$ и $CDE$ повторно пересекаются в точке $F$. Докажите, что $F$ делит одну из дуг $CD$ окружности $CDE$ пополам.