Олимпиадные задачи из источника «2016 год» для 2-7 класса - сложность 2 с решениями
В классе учатся 30 человек: отличники, троечники и двоечники. Отличники на все вопросы отвечают правильно, двоечники всегда ошибаются, а троечники на заданные им вопросы строго по очереди то отвечают верно, то ошибаются. Всем ученикам было задано по три вопроса: "Ты отличник?", "Ты троечник?", "Ты двоечник?". Ответили "Да" на первый вопрос – 19 учащихся, на второй – 12, на третий – 9. Сколько троечников учится в этом классе?
Точки пересечения графиков четырёх функций, заданных формулами <i>y = kx + b, y = kx – b, y = mx + b</i> и <i>y = mx – b</i>, являются вершинами четырёхугольника. Найдите координаты точки пересечения его диагоналей.
Расставьте в левой части равенства <img align="absmiddle" src="/storage/problem-media/65900/problem_65900_img_2.gif"> знаки арифметических операций и скобки так, чтобы равенство стало верным для всех <i>а</i>, отличных от нуля.
Последняя цифра в записи натурального числа в 2016 раз меньше самого числа. Найдите все такие числа.
Вдоль прямолинейного участка границы установлено 15 столбов. Около каждого столба поймали несколько близоруких шпионов. Для каждого столба одного из пойманных около него шпионов допросили. Каждый из допрошенных честно сказал, сколько других шпионов он видел. При этом видел он только тех, кто находился около его столба и около ближайших соседних столбов. Можно ли по этим данным восстановить численность шпионов, пойманных около каждого столба?
В трёх клетках таблицы 3×3 стоят числа (см. рисунок). Требуется заполнить числами остальные клетки так, чтобы во всех строках, столбцах и главных диагоналях суммы чисел оказались равными. Докажите, что это можно сделать единственным способом, и заполните таблицу.<div align="center"><img src="/storage/problem-media/65897/problem_65897_img_2.gif"></div>
На координатной прямой отмечено несколько точек (больше двух). Каждая точка, кроме двух крайних, находится ровно посередине между какими-то двумя отмеченными. Могут ли все отрезки, внутри которых нет отмеченных точек, иметь различные длины?
Вчера Никита купил несколько ручек: чёрные – по 9 рублей за штуку и синие – по 4 рубля за штуку. Зайдя сегодня в тот же магазин, он обнаружил, что цены на ручки изменились: чёрные стали стоить 4 рубля за штуку, а синие – 9 рублей. Увидев такое, Никита сказал с досадой: "Покупай я те же ручки сегодня, сэкономил бы 49 рублей". Не ошибается ли он?
Поставьте в каждом из шести чисел по одной запятой так, чтобы равенство стало верным: 2016 + 2016 + 2016 + 2016 + 2016 = 46368.
На клетчатой бумаге изобразите шестиугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.)
У каждого из тридцати шестиклассников есть одна ручка, один карандаш и одна линейка. После их участия в олимпиаде оказалось, что 26 учеников потеряли ручку, 23 – линейку и 21 – карандаш. Найдите наименьшее возможное количество шестиклассников, потерявших все три предмета.
В тридевятом царстве работают два обменных пункта. В первом дают за рубль 3000 тугриков, но берут 7000 тугриков комиссии за совершение обмена, а во втором за рубль дают только 2950 тугриков, но комиссию не берут. Турист заметил, что ему все равно, в каком из этих пунктов менять деньги. Сколько рублей он собирается поменять?
Иван Царевич хочет выйти из круглой комнаты с шестью дверями, пять из которых заперты на ключ. За одну попытку он может проверить три любые двери, и если одна из них не заперта, то он в неё выйдет. После каждой попытки Баба-Яга запирает дверь, которая была открыта, и отпирает одну из соседних дверей. Какую именно, Иван Царевич не знает. Как ему действовать, чтобы наверняка выйти из комнаты?
На клетчатой бумаге изобразите многоугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.)
На каждом из четырёх занятий математического кружка присутствовало по 20 школьников. Девять учеников посетили ровно по три занятия из этих четырёх, пять учеников – ровно по два занятия, а трое были только на одном занятии. Сколько школьников посетили все занятия?
Кенгуру прыгает вдоль прямой. Оттолкнувшись левой ногой, он прыгает на 3 метра, правой – на 5 метров, а обеими ногами – на 7 метров.
Как ему за 30 прыжков преодолеть ровно 200 метров?