Олимпиадные задачи из источника «8 (2010 год)»

Сеть автобусных маршрутов в пригороде Амстердама устроена так, что:

  а) на каждом маршруте есть ровно три остановки;

  б) каждые два маршрута либо вовсе не имеют общих остановок, либо имеют только одну общую остановку.

Какое наибольшее количество маршрутов может быть в этом пригороде, если в нём всего 9 остановок?

Квадрат с вершинами в узлах сетки и сторонами длиной 2009, идущими по линиям сетки, разрезали по линиям сетки на несколько прямоугольников.

Докажите, что среди них есть хотя бы один прямоугольник, периметр которого делится на 4.

Почтальон Печкин не хотел отдавать посылку. Тогда Матроскин предложил ему сыграть в следующую игру: каждым ходом Печкин пишет в строку слева направо буквы, произвольно чередуя М и П, пока в строке не будет всего 11 букв. Матроскин после каждого его хода, если хочет, меняет местами любые две буквы. Если в итоге окажется, что записанное слово является палиндромом (то есть одинаково читается слева направо и справо налево), то Печкин отдаёт посылку. Сможет ли Матроскин играть так, чтобы обязательно получить посылку?

В шахматном турнире каждый из восьми участников сыграл с каждым. В случае ничьей (и только в этом случае) партия ровно один раз переигрывалась и результат переигровки заносился в таблицу. Барон Мюнхгаузен утверждает, что в итоге два участника турнира сыграли по 11 партий, один – 10 партий, три – по 8 партий и два – по 7 партий. Может ли он оказаться прав?

Петя вырезал из пластмассы неравносторонний треугольник. Покажите, каким образом можно, пользуясь только этим инструментом как шаблоном, построить биссектрису какого-нибудь угла треугольника, равного вырезанному.

Просыпаясь каждое утро в 8.30, истопник набивает печку углём до упора. При этом он кладёт ровно 5 кг угля. Каждый вечер, ложась спать (а ложится спать он также в одно и то же время), он опять набивает печку углём до упора и кладёт при этом ровно 7 кг угля.

В какое время истопник ложится спать?

Замените буквы цифрами в ребусе  Г + О = Л – О = В × О = Л – О = М – К = А  так, чтобы все равенства стали верными; при этом одинаковым буквам должны соответствовать одинаковые цифры, а различным – различные. Найдите все решения ребуса.

В некотором государстве живут граждане трёх типов:  а) <i>дурак</i> считает всех дураками, а себя умным;  б) <i>скромный умный</i> про всех знает правильно, а себя считает дураком;  в) <i>уверенный умный</i> про всех знает правильно, а себя считает умным. В думе – 200 депутатов. Премьер-министр провёл анонимный опрос думцев: сколько умных в этом зале сейчас находится? По данным анкет он не смог узнать количество умных. Но тут из поездки вернулся единственный депутат, не участвовавший в опросе. Он заполнил анкету про всю думу, включая себя, и прочитав её, премьер-министр всё понял. Сколько умных могло быть в думе (включая путешественника)?

Буратино закопал на Поле Чудес два слитка – золотой и серебряный. В те дни, когда погода хорошая, золотой слиток увеличивается на 30%, а серебряный – на 20%. А в те дни, когда погода плохая, золотой слиток уменьшается на 30%, а серебряный – на 20%. Через неделю оказалось, что один из слитков увеличился, а другой уменьшился. Сколько дней была хорошая погода?

Вася называет прямоугольник, стороны которого отличаются на 1, <i>почти-квадратом</i>. (Например, прямоугольник со сторонами 5 и 6 – это почти-квадрат.) Существует ли почти-квадрат, который можно разрезать на 2010 почти-квадратов?

На острове Правландия все жители могут ошибаться, но младшие никогда не противоречат старшим, а когда старшие противоречат младшим, они (старшие) не ошибаются. Между жителями A, Б и В произошёл такой разговор:

  А: Б – самый высокий.

  Б: А – самый высокий.

  В: Я выше Б.

Следует ли из этого разговора, что чем моложе человек, тем он выше (для трёх говоривших)?

  Одноклассники Аня, Боря и Вася живут на одной лестничной клетке. В школу они идут с постоянными, но различными скоростями, не оглядываясь и не дожидаясь друг друга. Но если кто-то из них успевает догнать другого, то дальше он замедляется, чтобы идти вместе с тем, кого догнал.

  Однажды первой вышла Аня, вторым Боря, третьим Вася, и какие-то двое из них пришли в школу вместе. На следующий день первым вышел Вася, вторым Боря, третьей Аня. Могут ли все трое прийти в школу вместе?

Дан куб с ребром 2. Покажите, как наклеить на него без наложений 10 квадратов со стороной 1 так, чтобы никакие квадраты не граничили по отрезку (по стороне или её части). Перегибать квадраты нельзя.

На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые.

Сколько прямоугольников из этих девяти могут иметь нечётную площадь?<div align="center"><img src="/storage/problem-media/64302/problem_64302_img_2.png"></div>

Папа, Маша и Яша вместе идут в школу. Пока папа делает 3 шага, Маша делает 5 шагов. Пока Маша делает 3 шага, Яша делает 5 шагов. Маша и Яша посчитали, что вместе они сделали 400 шагов. Сколько шагов сделал папа?

У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать).<div align="center"><img src="/storage/problem-media/64300/problem_64300_img_2.png"></div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка