Олимпиадные задачи из источника «10 (2012 год)» для 8-10 класса - сложность 1-2 с решениями
Через точку <i>Y</i> на стороне <i>AB</i> равностороннего треугольника <i>ABC</i> проведена прямая, пересекающая сторону <i>BC</i> в точке <i>Z</i>, а продолжение стороны <i>CA</i> за точку <i>A</i> – в точке <i>X</i>. Известно, что <i>XY = YZ</i> и <i>AY = BZ</i>. Докажите, что прямые <i>XZ</i> и <i>BC</i> перпендикулярны.
В треугольнике <i>ABC</i> биссектриса угла <i>C</i> пересекает сторону <i>AB</i> в точке <i>M</i>, а биссектриса угла <i>A</i> пересекает отрезок <i>CM</i> в точке <i>T</i>. Оказалось, что отрезки <i>CM</i> и <i>AT</i> разбили треугольник <i>ABC</i> на три равнобедренных треугольника. Найдите углы треугольника <i>ABC</i>.
Назовём натуральные числа <i>a</i> и <i>b</i> <i>друзьями</i>, если их произведение является точным квадратом. Докажите, что если <i>a</i> – друг <i>b</i>, то <i>a</i> – друг НОД(<i>a, b</i>).
На карте обозначены четыре деревни: <i>A, B, C</i> и <i>D</i>, соединённые тропинками (см. рисунок). <div align="center"><img src="/storage/problem-media/116664/problem_116664_img_2.gif"></div>В справочнике указано, что на маршрутах<i>A-B-C</i>и<i>B-C-D</i>есть по 10 колдобин, на маршруте<i>A-B-D</i>колдобин 22, а на маршруте<i>A-D-B</i>колдобин 45. Туристы хотят добраться из<i>A</i>в<i>D</i>так, чтобы на их пути было как можно меньше колдобин. По какому маршруту им надо двигаться?
Записаны шесть положительных несократимых дробей, сумма числителей которых равна сумме их знаменателей. Паша перевёл каждую из неправильных дробей в смешанное число. Обязательно ли найдутся два числа, у которых одинаковы либо целые части, либо дробные части?