Олимпиадные задачи из источника «10 класс» - сложность 3-5 с решениями

Натуральные числа покрашены в <i>N</i> цветов. Чисел каждого цвета бесконечно много. Известно, что цвет полусуммы двух различных чисел одной чётности зависит только от цветов слагаемых.

  а) Докажите, что полусумма чисел одной чётности одного цвета всегда окрашена в тот же цвет.

  б) При каких <i>N</i> такая раскраска возможна?

Высоты <i>AA'</i> и <i>CC'</i> остроугольного треугольника <i>ABC</i> пересекаются в точке <i>H</i>. Точка <i>B</i><sub>0</sub> – середина стороны <i>AC</i>.

Докажите, что точка пересечения прямых, симметричных <i>BB</i><sub>0</sub> и <i>HB</i><sub>0</sub> относительно биссектрис углов <i>B</i> и <i>AHC</i> соответственно, лежит на прямой <i>A'C'</i>.

 <i>k</i> ≥ 6  – натуральное число. Докажите, что если некоторый многочлен с целыми коэффициентами принимает в <i>k</i> целых точках значения среди чисел от 1 до  <i>k</i> – 1,  то эти значения равны.

Андрей и Борис играют в следующую игру. Изначально на числовой прямой в точке<i> p </i>стоит робот. Сначала Андрей говорит расстояние, на которое должен сместиться робот. Потом Борис выбирает направление, в котором робот смещается на это расстояние, и т.д. При каких<i> p </i>Андрей может добиться того, что за конечное число ходов робот попадет в одну из точек 0 или 1 вне зависимости от действий Бориса?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка