Олимпиадные задачи из источника «2005 год» для 2-8 класса

Доска размером 2005×2005 разделена на квадратные клетки со стороной единица. Некоторые клетки доски в каком-то порядке занумерованы числами 1, 2, ... так, что на расстоянии, меньшем 10, от любой незанумерованной клетки найдется занумерованная клетка. Докажите, что найдутся две клетки на расстоянии, меньшем 150, которые занумерованы числами, различающимися более, чем на 23. (Расстояние между клетками – это расстояние между их центрами.)

Конструктор состоит из набора прямоугольных параллелепипедов. Все их можно поместить в одну коробку, также имеющую форму прямоугольного параллелепипеда. В бракованном наборе одно из измерений каждого параллелепипеда оказалось меньше стандартного. Всегда ли у коробки, в которую укладывается набор, тоже можно уменьшить одно из измерений (параллелепипеды укладываются в коробку так, что их рёбра параллельны рёбрам коробки)?

Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат?

Существует ли 2005 таких различных натуральных чисел, что сумма любых 2004 из них делится на оставшееся число?

Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.

Докажите, что можно выбрать по одному корню каждого из них так, чтобы их сумма равнялась сумме оставшихся корней.

На плоскости даны 2005 точек (никакие три из которых не лежат на одной прямой). Каждые две точки соединены отрезком. Тигр и Осёл играют в следующую игру. Осёл помечает каждый отрезок одной из цифр, а затем Тигр помечает каждую точку одной из цифр. Осёл выигрывает, если найдутся две точки, помеченные той же цифрой, что и соединяющий их отрезок, и проигрывает в противном случае. Доказать, что при правильной игре Осёл выиграет.

Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них.

По кругу расставлены 2005 натуральных чисел.

Доказать, что найдутся два соседних числа, после выкидывания которых оставшиеся числа нельзя разбить на две группы с равной суммой.

Высоты <i>AA'</i> и <i>BB'</i> треугольника <i>ABC</i> пересекаются в точке <i>H</i>. Точки <i>X</i> и <i>Y</i> – середины отрезков <i>AB</i> и <i>CH</i> соответственно.

Доказать, что прямые <i>XY</i> и <i>A'B'</i> перпендикулярны.

Клетчатый бумажный квадрат 8×8 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Его разрезали по отрезку, соединяющему середины двух противоположных сторон квадратика. На сколько частей мог при этом распасться квадрат?

Найти хотя бы одно целочисленное решение уравнения  <i>a</i>²<i>b</i>² + <i>a</i>² + <i>b</i>² + 1 = 2005.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка