Олимпиадные задачи из источника «1993 год» для 11 класса

Муха летает внутри правильного тетраэдра с ребром <i>a</i>. Какое наименьшее расстояние она должна пролететь, чтобы побывать на каждой грани и вернуться в исходную точку?

а) Известно, что область определения функции  <i>f</i>(<i>x</i>)  – отрезок  [–1, 1]  и  <i>f</i>(<i>f</i>(<i>x</i>)) = – <i>x</i>  при всех <i>x</i>, а её график является объединением конечного числа точек и интервалов. Нарисовать график такой функции <i>f</i>(<i>x</i>). б) Можно ли это сделать, если область определения функции – интервал  (–1, 1)?  Вся числовая ось?

В ящиках лежат камни. За один ход выбирается число <i>k</i>, затем камни в ящиках делятся на группы по <i>k</i> штук и остаток менее, чем из <i>k</i> штук. Оставляют по одному камню из каждой группы и весь остаток. Можно ли за пять ходов добиться, чтобы в ящиках осталось ровно по одному камню, если в каждом из них

  а) не более 460 камней;

  б) не более 461 камня?

Даны <i>n</i> точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно непараллельных прямых может быть среди них?

Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)

Известно, что<i>tg</i> $\alpha$+<i>tg</i> $\beta$=<i>p</i>,<i>ctg</i> $\alpha$+<i>ctg</i> $\beta$=<i>q</i>. Найти <i>tg</i> ($\alpha$+$\beta$).

Для каждой пары действительных чисел<i>a</i>и<i>b</i>рассмотрим последовательность чисел<i>p</i><sub>n</sub>= [2{<i>an</i>+<i>b</i>}]. Любые<i>k</i>подряд идущих членов этой последовательности назовем словом. Верно ли, что любой упорядоченный набор из нулей и единиц длины<i>k</i>будет словом последовательности, заданной некоторыми<i>a</i>и<i>b</i>при<i>k</i>= 4; при<i>k</i>= 5? Примечание: [<i>c</i>] - целая часть, {<i>c</i>} - дробная часть числа <i>c</i>.

При разложении чисел <i>A</i> и <i>B</i> в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  <i>A + B</i>?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка