Олимпиадные задачи из источника «1972 год» - сложность 3-4 с решениями

На всех клетках шахматной доски 8×8 расставлены натуральные числа. Разрешается выделить любой квадрат размером 3×3 или 4×4 и увеличить все числа в нём на 1. Мы хотим в результате нескольких таких операций добиться, чтобы числа во всех клетках делились на 10. Всегда ли это удастся сделать?

Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят <i>n</i>, расположенные в порядке возрастания (<i>ряд Фарея</i>). Пусть <sup><i>a</i></sup>/<sub><i>b</i></sub> и <sup><i>c</i></sup>/<sub><i>d</i></sub> – какие-то два соседних числа (дроби несократимы). Доказать, что  |<i>bc – ad</i>| = 1.

На плоскости проведено 3000 прямых, причём никакие две из них не параллельны и никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на куски. Доказать, что среди кусков найдётся не менее: а) 1000 треугольников, б) 2000 треугольников.

Существуют ли рациональные числа<i>a</i>,<i>b</i>,<i>c</i>,<i>d</i>, удовлетворяющие равенству <div align="CENTER"> (<i>a</i> + <i>b</i>$\displaystyle \sqrt{2}$)<sup>2n</sup> + (<i>c</i> + <i>d</i>$\displaystyle \sqrt{2}$)<sup>2n</sup> = 5 + 4$\displaystyle \sqrt{2}$ </div>(где<i>n</i>— натуральное число)?

На плоскости проведено 300 прямых, причём никакие две из них не параллельны и никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на куски. Доказать, что среди кусков найдётся не менее 100 треугольников.

Пусть <i>K</i>(<i>x</i>) равно числу таких несократимых дробей <sup><i>a</i></sup>/<sub><i>b</i></sub>, что  <i>a < x</i>  и  <i>b < x</i>  (<i>a</i> и <i>b</i> – натуральные числа). Например,  <i>K</i>(<sup>5</sup>/<sub>2</sub>) = 3  (дроби 1, 2, ½).

Вычислить сумму  <i>K</i>(100) + <i>K</i>(<sup>100</sup>/<sub>2</sub>) + <i>K</i>(<sup>100</sup>/<sub>3</sub>) + ... + <i>K</i>(<sup>100</sup>/<sub>99</sub>) + <i>K</i>(<sup>100</sup>/<sub>100</sub>).

В городе Никитовка двустороннее движение. В течение двух лет в городе проходил ремонт всех дорог. Вследствие этого в первый год на некоторых дорогах было введено одностороннее движение. На следующий год на этих дорогах было восстановлено двустороннее движение, а на остальных дорогах введено одностороннее движение. Известно, что в каждый момент ремонта можно было проехать из любой точки города в любую другую. Доказать, что в Никитовке можно ввести одностороннее движение так, что из каждой точки города удастся проехать в любую другую точку.

В стране Мара расположено несколько замков. Из каждого замка ведут три дороги. Из какого-то замка выехал рыцарь. Странствуя по дорогам, он из каждого замка, стоящего на его пути, поворачивает либо направо, либо налево по отношению к дороге, по которой приехал. Рыцарь никогда не сворачивает в ту сторону, в которую он свернул перед этим. Доказать, что когда-нибудь он вернётся в исходный замок.

Озеро имеет форму невыпуклого<nobr><i>n</i>-угольника.</nobr>Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого<nobr><i>m</i>-угольника,</nobr>где<nobr><i>m</i>≤<i>n</i>.</nobr>

В городе "Многообразие" живут<i>n</i>жителей, любые два из которых либо дружат, либо враждуют между собой. Каждый день не более чем один житель может начать новую жизнь: перессориться со всеми своими друзьями и подружиться со всеми своими врагами. Доказать, что все жители могут подружиться. <i>Примечание.</i>Если<i>A</i>— друг<i>B</i>, а<i>B</i>— друг<i>C</i>, то<i>A</i>— также друг<i>C</i>. Предполагается также, что среди любых троих жителей хотя бы двое дружат между собой.

На плоскости лежат две одинаковые фигуры, имеющие форму буквы Г&#039;&#039; . Концы коротких палочек у букв Г'' обозначим через<i>A</i>и<i>A'</i>. Длинные палочки разделены на<i>n</i>равных частей точками<i>a</i><sub>1</sub>, ...,<i>a</i><sub>n - 1</sub>;<i>a'</i><sub>1</sub>, ...,<i>a'</i><sub>n - 1</sub>(точки деления нумеруются от концов длинных палочек). Проводятся прямые<i>Aa</i><sub>1</sub>,<i>Aa</i><sub>2</sub>, ...,<i>Aa</i><sub>n - 1</sub>;<i>A'a</i><sup>$\scriptstyle \prime$</sup><sub>1</sub>,<i>A'a&...

В треугольнике<i>ABC</i>проведены медианы<i>AD</i>и<i>BE</i>. Углы<i>CAD</i>и<i>CBE</i>равны30<sup><tt>o</tt></sup>. Доказать, что<i>AB</i>=<i>BC</i>.

В некотором лесу расстояние между каждыми двумя деревьями не превосходит разности их высот. Все деревья имеют высоту меньше 100 м.

Докажите, что этот лес можно огородить забором длиной 200 м.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка