Олимпиадные задачи из источника «1952 год» для 10 класса - сложность 3 с решениями
Докажите, что ни при каком целом <i>A</i> многочлен 3<i>x</i><sup>2<i>n</i></sup> + <i>Ax</i><sup><i>n</i></sup> + 2 не делится на многочлен 2<i>x</i><sup>2<i>m</i></sup> + <i>Ax</i><sup><i>m</i></sup> + 3.
Поместить в полый куб с ребром<i>a</i>три цилиндра диаметра${\frac{a}{2}}$и высоты<i>a</i>так, чтобы они не могли менять своего положения внутри куба.
$\Delta$<i>ABC</i>разбит прямой<i>BD</i>на два треугольника. Докажите, что сумма радиусов окружностей, вписанных в$\Delta$<i>ABD</i>и$\Delta$<i>DBC</i>, больше радиуса окружности, вписанной в$\Delta$<i>ABC</i>.