Олимпиадные задачи из источника «1947 год» для 2-10 класса - сложность 2 с решениями

В числовом треугольнике <div align="center"><img src="/storage/problem-media/76551/problem_76551_img_2.gif"></div>каждое число равно сумме чисел, расположенных в предыдущей строке над этим числом и над его соседями справа и слева (отсутствующие числа считаются равными нулю). Докажите, что в каждой строке, начиная с третьей, найдутся чётные числа.

Докажите, что выпуклый 13-угольник нельзя разрезать на параллелограммы.

Найти все прямые в пространстве, проходящие через данную точку<i>M</i>на данном расстоянии<i>d</i>от данной прямой<i>AB</i>.

Докажите, что каково бы ни было целое число <i>n</i>, среди чисел <i>n,  n</i> + 1,  <i>n</i> + 2,  ...,  <i>n</i> + 9  есть хотя бы одно, взаимно простое с остальными девятью.

В каком из выражений:  (1 – <i>x</i>² + <i>x</i>³)<sup>1000</sup>,   (1 + <i>x</i>² – <i>x</i>³)<sup>1000</sup>  после раскрытия скобок и приведения подобных членов больший коэффициент при <i>x</i><sup>20</sup>?

Точка<i>O</i>является точкой пересечения высот остроугольного треугольника<i>ABC</i>. Докажите, что 3 окружности, проходящие: первая через точки<i>O</i>,<i>A</i>,<i>B</i>, вторая — через точки<i>O</i>,<i>B</i>,<i>C</i>и третья — через точки<i>O</i>,<i>C</i>,<i>A</i>, равны между собой.

Докажите, что каково бы ни было целое число <i>n</i>, среди чисел <i>n,  n</i> + 1,  <i>n</i> + 2,  <i>n</i> + 3,  <i>n</i> + 4  есть хотя бы одно число взаимно простое с остальными четырьмя из этих чисел.

Какой остаток даёт  <i>x + x</i>³ + <i>x</i><sup>9</sup> + <i>x</i><sup>27</sup> + <i>x</i><sup>81</sup> + <i>x</i><sup>243</sup>  при делении на  <i>x</i> – 1?

Определить коэффициенты, которые будут стоять при <i>x</i><sup>17</sup> и <i>x</i><sup>18</sup> после раскрытия скобок и приведения подобных членов в выражении <div align="CENTER">(1 + <i>x</i><sup>5</sup> + <i>x</i><sup>7</sup>)<sup>20</sup>. </div>

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка