Олимпиадные задачи из источника «7 класс»

Куб размером3×3×3 состоит из 27 единичных кубиков. Можно ли побывать в каждом кубике по одному разу, двигаясь следующим образом: из кубика можно пройти в любой кубик, имеющий с ним общую грань, причём запрещено ходить два раза подряд в одном направлении?

В честь праздника 1% солдат в полку получил новое обмундирование. Солдаты расставлены в виде прямоугольника так, что солдаты в новом обмундировании оказались не менее чем в 30% колонн и не менее чем в 40% шеренг. Какое наименьшее число солдат могло быть в полку?

Прямоугольник разрезали шестью вертикальными и шестью горизонтальными разрезами на 49 прямоугольников (см. рисунок). Оказалось, что периметр каждого из получившихся прямоугольников — целое число метров. Обязательно ли периметр исходного прямоугольника — целое число метров?<img src="/storage/problem-media/103890/problem_103890_img_2.gif">

Чтобы открыть сейф, нужно ввести код  – число, состоящее из семи цифр: двоек и троек. Сейф откроется, если двоек больше, чем троек, а код делится и на 3, и на 4. Придумайте код, открывающий сейф.

Квадратную салфетку сложили пополам, полученный прямоугольник сложили пополам ещё раз (см. рисунок). Получившийся квадратик разрезали ножницами (по прямой). Могла ли салфетка распасться а) на 2 части? б) на 3 части? в) на 4 части? г) на 5 частей? Если да — нарисуйте такой разрез, если нет — напишите слово '' нельзя''.<img src="/storage/problem-media/103888/problem_103888_img_2.gif">

Расставьте скобки и знаки арифметических действий так, чтобы получилось верное равенство:  <img align="absMIDDLE" src="/storage/problem-media/103887/problem_103887_img_2.gif">

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка