Назад

Олимпиадная задача по стереометрии: прохождение куба 3×3×3 без повторов

Задача

Куб размером3×3×3 состоит из 27 единичных кубиков. Можно ли побывать в каждом кубике по одному разу, двигаясь следующим образом: из кубика можно пройти в любой кубик, имеющий с ним общую грань, причём запрещено ходить два раза подряд в одном направлении?

Решение

Предположим, что можно. В кубе 8 угловых кубиков (на рисунке они покрашены в чёрный цвет) и 6 '' центральных'' кубиков (они расположены в центрах граней и заштрихованы на рисунке). Нетрудно видеть, что любой ход из углового кубика ведёт в кубик в середине ребра, а следующий ход — в центральный кубик. Таким образом, чтобы попасть из одного углового кубика в другой, придётся пройти хотя бы через один центральный. Иными словами, между каждыми двумя соседними (в порядке обхода) угловыми кубиками должен встретиться хотя бы один центральный. Значит, центральных кубиков не меньше семи, а их всего лишь шесть!

Ответ

Нельзя.

Чтобы оставлять комментарии, войдите или зарегистрируйтесь

Комментариев нет