Олимпиадные задачи из источника «1993 год» - сложность 2 с решениями
Гулливер попал в страну лилипутов, имея 7000000 рублей. На все деньги он сразу купил кефир в бутылках по цене 7 рублей за бутылку (пустая бутылка стоила в то время 1 рубль). Выпив весь кефир, он сдал бутылки и на все вырученные деньги сразу купил кефир. При этом он заметил, что и стоимость кефира, и стоимость пустой бутылки выросли в два раза. Затем он снова выпил весь кефир, сдал бутылки, на все вырученные деньги снова купил кефир и т. д. При этом между каждыми двумя посещениями магазина и стоимость кефира, и стоимость пустой бутылки возрастали в два раза. Сколько бутылок кефира выпил Гулливер?
Решите уравнение:<div align="CENTER"> 1993 = 1 + 8 : (1 + 8 : (1 - 8 : (1 + 4 : (1 - 4 : (1 - 8 : <i>x</i>))))). </div>
Зная, что число 1993 простое, выясните, существуют ли такие натуральные числа <i>x</i> и <i>y</i>, что
а) <i>x</i>² – <i>y</i>² = 1993;
б) <i>x</i>³ – <i>y</i>³ = 1993;
в) <i>x</i><sup>4</sup> – <i>y</i><sup>4</sup> = 1993?
Можно ли в центры 16 клеток шахматной доски 8×8 вбить гвозди так, чтобы никакие три гвоздя не лежали на одной прямой?
Если у числа<i>x</i>подсчитать сумму цифр и с полученным числом повторить это ещё два раза, то получится ещё три числа. Найдите самое маленькое<i>x</i>, для которого все четыре числа различны, а последнее из них равно 2.
Как из семи ''уголков'', каждый из которых склеен из трёх кубиков1×1×1, и шести отдельных кубиков1×1×1 составить большой куб3×3×3? Можно ли это сделать так, чтобы все отдельные кубики оказались в серединах граней большого куба?