Олимпиадные задачи из источника «Белорусские республиканские математические олимпиады» для 10 класса - сложность 4 с решениями
Белорусские республиканские математические олимпиады
НазадНа плоскости дан квадрат со стороной<i> a </i>. Найти объём тела, состоящего из всех точек пространства, расстояние от которых до части плоскости, ограниченной квадратом, не больше<i> a </i>.
В плоскости расположена прямая<i> y </i>и прямоугольный треугольник<i> ABC </i>с катетами<i> AC=</i>3<i>; BC=</i>4. Вершина<i> C </i>находится на расстоянии 10 от прямой<i> y </i>. Угол между<i> y </i>и направлением катета<i> AC </i>равен<i> α </i>. Надо определить угол<i> α </i>, при котором поверхность, полученная вращением треугольника<i> ABC </i>вокруг прямой<i> y </i>, будет наименьшей.
Ребро правильного тетраэдра равно<i> a </i>. Найти стороны и площадь сечения, параллельного двум его скрещивающимся рёбрам и отстоящего от центра тетраэдра на расстояние<i> b </i>, причём0<i><b<a<img src="/storage/problem-media/109148/problem_109148_img_2.gif">/</i>4.
Дан ряд чисел<i> 1,1,2,3,5,8,13,21,34,..., </i>каждое из которых, начиная с третьего, равно сумме двух предыдущих. Доказать, что каждое натуральное число<i> n>2 </i>равно сумме нескольких различных чисел указанного ряда.
Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром.
На диагонали<i> AC </i>нижней грани единичного куба<i> ABCDA<sub>1</sub>B<sub>1</sub>C<sub>1</sub>D<sub>1</sub> </i>отложен отрезок<i> AE </i>длины<i> l </i>. На диагонали<i> B<sub>1</sub>D<sub>1</sub> </i>его верхней грани отложен отрезок<i> B<sub>1</sub>F </i>длиной<i> ml </i>. При каком<i> l </i>(и фиксированном<i> m>0 </i>) длина отрезка<i> EF </i>будет наименьшей?
На окружности даны три точки<i> A,B,C </i>. Построить (циркулем и линейкой) на этой окружности четвёртую точку<i> D </i>так, чтобы в полученный четырёхугольник можно было бы вписать окружность.
Доказать, что если <center><i>
(x(y+z-x))/ x=(y(z+x-y))/ y=(z(x+y-z))/ z,
</i></center> то<i> x<sup>y</sup>y<sup>x</sup>=z<sup>y</sup>y<sup>z</sup>=x<sup>z</sup>z<sup>x</sup> </i>.
Докажите, что основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на одной прямой (<i>прямая Симсона.</i>)