Олимпиадные задачи из источника «Чётность-1»

В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.

Могут ли они вращаться?

За круглым столом сидят мальчики и девочки. Докажите, что количество пар соседей разного пола чётно.

На клетчатой бумаге нарисован замкнутый путь (по линиям сетки). Доказать, что он имеет чётную длину (сторона клетки имеет длину 1).

Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.

Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно обеих главных диагоналей.

Докажите, что одна из шашек стоит в центральной клетке.

На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно диагонали.

Докажите, что одна из шашек расположена на диагонали.

Из набора домино выбросили все кости с шестёрками. Можно ли оставшиеся кости выложить в ряд?

Все костяшки домино выложили в цепь. На одном конце оказалось 5 очков. Сколько очков на другом конце?

Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?

На хоккейном поле лежат три шайбы<i>А</i>,<i>В</i>и<i>С</i>. Хоккеист бьёт по одной из них так, что она пролетает между двумя другими. Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах?

Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз?

Конь вышел с поля a1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка