Олимпиадные задачи из источника «1980 год» для 2-8 класса - сложность 2-3 с решениями
В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.
<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a<sub>n</sub></i>, ... – возрастающая последовательность натуральных чисел. Известно, что <i>a</i><sub><i>n</i>+1</sub> ≤ 10<i>a<sub>n</sub></i> при всех натуральных <i>n</i>.
Доказать, что бесконечная десятичная дробь 0,<i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub>..., полученная приписыванием этих чисел друг к другу, непериодическая.
На хорде <i>AB</i> окружности <i>S</i> с центром в точке <i>O</i> взята точка <i>C</i>. <i>D</i> — вторая точка пересечения окружности <i>S</i> с окружностью, описанной около треугольника <i>ACO</i>. Докажите, что <i>CD</i> = <i>CB</i>.