Олимпиадные задачи из источника «1975 год» - сложность 3 с решениями

В некотором государстве города соединены дорогами. Длина каждой дороги меньше 500 км, и из каждого города в любой другой можно попасть, проехав по дорогам меньше 500 км. Когда одна дорога оказалась закрытой на ремонт, выяснилось, что из каждого города можно проехать по оставшимся дорогам в любой другой. Доказать, что при этом можно проехать меньше 1500 км.

В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности:

  а) набор цифр 1234; 3269;   б) вторично набор 1975;   в) набор 8197?

На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.

В параллелограмм <i>P</i><sub>1</sub> вписан параллелограмм <i>P</i><sub>2</sub>, а в параллелограмм <i>P</i><sub>2</sub> вписан параллелограмм <i>P</i><sub>3</sub>, стороны которого параллельны сторонам <i>P</i><sub>1</sub>. Докажите, что длина хотя бы одной из сторон <i>P</i><sub>1</sub> не превосходит удвоенной длины параллельной ей стороны <i>P</i><sub>3</sub>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка