Олимпиадные задачи из источника «1972 год» для 2-7 класса - сложность 1-2 с решениями
Найдите наименьшее натуральное число <i>n</i>, для которого выполнено следующее условие: если число <i>p</i> – простое и <i>n</i> делится на <i>p</i> – 1, то <i>n</i> делится на <i>p</i>.
Можно ли увезти из каменоломни 50 камней, массы которых 370 кг, 372 кг, 374 кг, ..., 468 кг (арифметическая прогрессия с разностью 2 кг), на семи трёхтонках?