Олимпиадные задачи из источника «1971 год» для 3-9 класса - сложность 5 с решениями
Множество, состоящее из конечного числа точек плоскости, обладает следующим свойством: для любых двух его точек<i>A</i><nobr>и <i>B</i></nobr>существует такая<nobr>точка <i>С</i></nobr>этого множества, что треугольник<i>ABC</i>равносторонний. Сколько точек может содержать такое множество?
Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а...
Пусть<i>l</i><sub>1</sub>,<i>l</i><sub>2</sub>, ...,<nobr><i>l</i><sub><i>n</i></sub> —</nobr>несколько прямых на плоскости, не все из которых параллельны. Докажите, что можно единственным образом выбрать на каждой из этих прямых по точке<i>X</i><sub>1</sub>,<i>X</i><sub>2</sub>, ...,<i>X</i><sub><i>n</i></sub>так, чтобы перпендикуляр, восставленный к прямой<i>l</i><sub><i>k</i></sub>в точке<i>X</i><sub><i>k</i></sub>(для любого натурального<nobr><i>k</i> < <i>n</i>),</nobr>проходил через точку<i>X...
В квадрате со стороной 1 расположена фигура, расстояние между любыми двумя точками которой не равно 0, 001. Докажите, что площадь этой фигуры не превосходит: а) 0, 34; б) 0, 287.