Олимпиадные задачи из источника «1970 год» для 1-9 класса - сложность 5 с решениями

Все натуральные числа, в десятичной записи которых не больше<nobr><i>n</i> цифр,</nobr>разбили на два множества следующим образом. В первое множество входят числа с нечётной суммой цифр, а во<nobr>второе —</nobr>c чётной суммой цифр. Докажите, что для любого натурального числа<nobr><i>k</i> <font face="Symbol">£</font> <i>n</i></nobr>сумма<nobr><i>k</i>-х степеней</nobr>всех чисел первого множества равна сумме<nobr><i>k</i>-х степеней</nobr>всех чисел второго множества.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка