Олимпиадные задачи из источника «параграф 3. Теорема Птолемея» для 10-11 класса

Окружности $\alpha$,$\beta$,$\gamma$и $\delta$касаются данной окружности в вершинах <i>A</i>,<i>B</i>,<i>C</i>и <i>D</i>выпуклого четырехугольника <i>ABCD</i>. Пусть <i>t</i><sub>$\scriptstyle \alpha$$\scriptstyle \beta$</sub> — длина общей касательной к окружностям $\alpha$и $\beta$(внешней, если оба касания внутренние или внешние одновременно, и внутренней, если одно касание внутреннее, а другое внешнее); <i>t</i><sub>$\scriptstyle \beta$$\scriptstyle \gamma$</sub>,<i>t</i><sub>$\scriptstyle \gamma$$\scriptstyle \delta$</sub>и т. д. определяются аналогично. Докажите, что <i>t</i><sub>$\scriptstyle \alpha$$\scriptstyle \beta$</sub><...

Биссектриса угла <i>A</i>треугольника <i>ABC</i>пересекает описанную окружность в точке <i>D</i>. Докажите, что <i>AB</i>+<i>AC</i>$\leq$2<i>AD</i>.

Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны <i>d</i><sub>a</sub>,<i>d</i><sub>b</sub>и <i>d</i><sub>c</sub>. Докажите, что <i>d</i><sub>a</sub>+<i>d</i><sub>b</sub>+<i>d</i><sub>c</sub>=<i>R</i>+<i>r</i>.

Пусть $\alpha$=$\pi$/7. Докажите, что ${\frac{1}{\sin\alpha }}$=${\frac{1}{\sin 2\alpha }}$+${\frac{1}{\sin 3\alpha }}$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка