Олимпиадные задачи из источника «глава 23. Делимость, инварианты, раскраски» - сложность 5 с решениями
<i>Триангуляцией</i>многоугольника называют его разбиение на треугольники, обладающее тем свойством, что эти треугольники либо имеют общую сторону, либо имеют общую вершину, либо не имеют общих точек (т. е. вершина одного треугольника не может лежать на стороне другого). Докажите, что треугольники триангуляции можно раскрасить в три цвета так, что имеющие общую сторону треугольники будут разного цвета.
Правильный треугольник разбит на <i>n</i><sup>2</sup>одинаковых правильных треугольников (рис.). Часть из них занумерована числами1, 2,...,<i>m</i>, причем треугольники с последовательными номерами имеют смежные стороны. Докажите, что<i>m</i>$\le$<i>n</i><sup>2</sup>-<i>n</i>+ 1.
Даны точки<i>A</i><sub>1</sub>,...,<i>A</i><sub>n</sub>. Рассмотрим окружность радиуса <i>R</i>, содержащую некоторые из них. Построим затем окружность радиуса <i>R</i>с центром в центре масс точек, лежащих внутри первой окружности, и т. д. Докажите, что этот процесс остановится, т. е. окружности начнут совпадать.
Докажите, что выпуклый многоугольник нельзя разрезать на конечное число невыпуклых четырехугольников.
Докажите, что существуют равновеликие многоугольники, которые нельзя разбить на многоугольники (возможно, невыпуклые), переводящиеся друг в друга параллельным переносом.