Олимпиадные задачи из источника «параграф 5. Вспомогательные проекции»

Пусть <i>O</i>и <i>R</i> — центр и радиус описанной окружности треугольника<i>ABC</i>,<i>Z</i>и <i>r</i> — центр и радиус его вписанной окружности;<i>K</i> — точка пересечения медиан треугольника с вершинами в точках касания вписанной окружности со сторонами треугольника<i>ABC</i>. Докажите, что точка <i>Z</i>лежит на отрезке<i>OK</i>, причем<i>OZ</i>:<i>ZK</i>= 3<i>R</i>:<i>r</i>.

Пусть <i>a</i>,<i>b</i>и <i>c</i> — длины сторон треугольника<i>ABC</i>,<b>n</b><sub>a</sub>,<b>n</b><sub>b</sub>и <b>n</b><sub>c</sub> — векторы единичной длины, перпендикулярные соответствующим сторонам и направленные во внешнюю сторону. Докажите, что<div align="CENTER"> <i>a</i><sup>3</sup><b>n</b><sub>a</sub> + <i>b</i><sup>3</sup><b>n</b><sub>b</sub> + <i>c</i><sup>3</sup><b>n</b><sub>c</sub> = 12<i>S</i><sup> . </sup>$\displaystyle \overrightarrow{MO}$, </div>где <i>S</i...

Пусть<b>a</b><sub>1</sub>,<b>a</b><sub>2</sub>, ...,<b>a</b><sub>2n + 1</sub>— векторы длины 1. Докажите, что в сумме<b>c</b>= ±<b>a</b><sub>1</sub>±<b>a</b><sub>2</sub>±...±<b>a</b><sub>2n + 1</sub>знаки можно выбрать так, что|<b>c</b>|$\le$1.

Выпуклый 2<i>n</i>-угольник<i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>2n</sub>вписан в окружность радиуса 1. Докажите, что<div align="CENTER"> |$\displaystyle \overrightarrow{A_1A_2}$ + $\displaystyle \overrightarrow{A_3A_4}$ +...+ $\displaystyle \overrightarrow{A_{2n-1}A_{2n}}$|$\displaystyle \le$2. </div>

Точка <i>X</i>лежит внутри треугольника<i>ABC</i>,$\alpha$=<i>S</i><sub>BXC</sub>,$\beta$=<i>S</i><sub>CXA</sub>и $\gamma$=<i>S</i><sub>AXB</sub>. Пусть <i>A</i><sub>1</sub>,<i>B</i><sub>1</sub>и <i>C</i><sub>1</sub> — проекции точек <i>A</i>,<i>B</i>и <i>C</i>на произвольную прямую <i>l</i>. Докажите, что длина вектора$\alpha$$\overrightarrow{AA_1}$+$\beta$$\overrightarrow{BB_1}$+$\gamma$$\overrightarrow{CC_1}$равна($\alpha$+$\beta$+$\gamma$)<i>d</i>, где <i>d</i> — расстояние от точки <i>X</i>до прямой <i>l</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка