Олимпиадные задачи из источника «параграф 2. Экстремальные точки треугольника» - сложность 2 с решениями

Дан треугольник<i>ABC</i>. Найдите на прямой<i>AB</i>точку <i>M</i>, для которой сумма радиусов описанных окружностей треугольников<i>ACM</i>и<i>BCM</i>была бы наименьшей.

На гипотенузе <i>AB</i> прямоугольного треугольника <i>ABC</i> взята точка <i>X, M</i> и <i>N</i> – её проекции на катеты <i>AC</i> и <i>BC</i>.

  а) При каком положении точки <i>X</i> длина отрезка <i>MN</i> будет наименьшей?

  б) При каком положении точки <i>X</i> площадь четырёхугольника <i>CMXN</i> будет наибольшей?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка