Олимпиадные задачи из источника «Генкин С.А., Итенберг И.В., Фомин Д.В., Ленинградские математические кружки» для 10-11 класса - сложность 1 с решениями

Найдите наименьшее натуральное значение <i>n</i>, при котором число <i>n</i>! делится на 990.

Докажите, что  <i>x</i>² + <i>y</i>² + <i>z</i>² ≥ <i>xy + yz + zx</i>&nbsp при любых <i>x, y, z</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка