Олимпиадные задачи из источника «Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел» для 11 класса - сложность 5 с решениями
Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел
НазадИмеется несколько кучек камней. Двое по очереди берут из них камни. За один ход разрешается взять из одной кучки от 1 до 5 камней. Определите выигрышную стратегию в этой игре, если тот, кто взял последний камень а) выигрывает; б) проыигрывает.
Докажите, что число$\sqrt{2}$+$\sqrt{3}$+$\sqrt{5}$+$\sqrt{7}$+$\sqrt{11}$+$\sqrt{13}$+$\sqrt{17}$иррационально.
Докажите равенства а)$\sqrt[4]{\dfrac{7+3\sqrt5}{2}}$-$\sqrt[4]{\dfrac{7-3\sqrt5}{2}}$= 1; б)$\sqrt[5]{\dfrac{11+5\sqrt5}{2}}$+$\sqrt[9]{\dfrac{76-34\sqrt5}{2}}$= 1. Найдите общую формулу, для которой данные равенства являются частными случаями.