Олимпиадные задачи из источника «глава 4. Арифметика остатков» для 6 класса
Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?
Пусть <i>m</i> и <i>n</i> – целые числа. Докажите, что <i>mn</i>(<i>m + n</i>) – чётное число.
Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.
Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.
К 17-значному числу прибавили число, записанное теми же цифрами, но в обратном порядке.
Докажите, что хотя бы одна цифра полученной суммы чётна.
Все костяшки домино выложили в цепь. На одном конце оказалось 5 очков. Сколько очков на другом конце?