Олимпиадные задачи из источника «Рамблер-Наука - задача дня (www.nature.ru)» - сложность 4-5 с решениями

На табло горят несколько лампочек. Имеется несколько кнопок. Нажатие на кнопку меняет состояние лампочек, с которыми она соединена. Известно, что для любого набора лампочек найдется кнопка, соединенная с нечетным числом лампочек из этого набора. Докажите, что, нажимая на кнопки, можно погасить все лампочки.

Внутри круглого блина радиуса 10 запекли монету радиуса 1. Каким наименьшим числом прямолинейных разрезов можно наверняка задеть монету?

Положительные иррациональные числа a и b таковы, что 1/a+1/b=1. Докажите, что среди чисел [ma], [nb] каждое натуральное число встречается ровно один раз.

Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам.

На прямоугольном столе лежат равные картонные квадраты k различных цветов со сторонами, параллельными сторонам стола. Если рассмотреть любые k квадратов различных цветов, то какие-нибудь два из них можно прибить к столу одним гвоздем. Докажите, что все квадраты некоторого цвета можно прибить к столу 2k-2 гвоздями.

У выпуклого многогранника все грани - правильные пятиугольники или правильные шестиугольники. Сколько среди этих граней пятиугольников?

Лабиринтом называется клетчатый квадрат 10*10, некоторые пары соседних узлов в котором соединены отрезком - "стеной" таким образом, что переходя из клетки в соседнюю по стороне клетку и не проходя через стены, можно посетить все клетки квадрата. Границу квадрата будем также считать обнесенной стеной. В некоторой клетке некоторого лабиринта стоит робот. Он понимает 4 команды - Л, П, В, Н, по которым соответственно идет влево, вправо, вверх и вниз, а если перед ним "стена", то стоит на месте. Как написать программу для робота, выполняя которую он обойдет все клетки независимо от лабиринта и от своего начального положения?

Имеется пирог некоторой формы. Докажите, что его можно разрезать на четыре равные по массе части двумя прямолинейными перпендикулярными разрезами.

Кусок сыра имеет форму куба. В нем имеется несколько одинаковых непересекающихся сферических дыр. Докажите, что можно разрезать сыр на выпуклые многогранники так, чтобы внутри каждого из них находилась ровно одна дыра.

Множество <i>M</i> есть объединение <i>k</i> попарно непересекающихся отрезков, лежащих на одной прямой. Известно, что любой отрезок длины, не большей 1, можно расположить на прямой так, чтобы его концы принадлежали множеству <i>M</i>. Докажите, что сумма длин отрезков, составляющих <i>M</i>, не меньше <sup>1</sup>/<sub><i>k</i></sub>.

На поверхности куба мелом отмечено 100 различных точек. Докажите, что можно двумя различными способами поставить кубик на черный стол (причем в точности на одно и то же место) так, чтобы отпечатки от мела на столе при этих способах были разными. (Если точка отмечена на ребре или в вершине, она тоже дает отпечаток.)

Клетки шахматной доски занумерованы числами от 1 до 32 так, что каждое число использовалось дважды. Докажите, что можно выбрать 32 клетки, занумерованные разными числами, так что на каждой вертикали и на каждой горизонтали найдется хотя бы по две выбранные клетки.

Натуральные числа от 1 до n расставляются в ряд в произвольном порядке. Расстановка называется плохой, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются хорошими. Докажите, что количество хороших расстановок не превосходит 81<sup>n</sup>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка