Олимпиадные задачи по теме «Методы математического анализа» для 8 класса - сложность 2 с решениями
Методы математического анализа
НазадСуществуют ли такие натуральные <i>x</i> и <i>y</i>, что <i>x</i><sup>4</sup> – <i>y</i><sup>4</sup> = <i>x</i>³ + <i>y</i>³?
В саду растут яблони и груши — всего 7 деревьев (деревья обоих видов присутствуют). Ближе всех к каждому дереву растет дерево того же вида и дальше всех от каждого дерева растет дерево того же вида. Приведите пример того, как могут располагаться деревья в саду. Комментарий. Имелось в виду, что если ближайших к данному дереву (или самых дальних от данного дерева) несколько, то условие должно выполнятся для<b>каждого</b>из них.
Сборная Лихтенштейна по футболу выиграла у сборной Люксембурга со счетом 9:5. Докажите, что по ходу матча был момент, когда сборной Лихтенштейна оставалось забить столько голов, сколько уже забила сборная Люксембурга.
На отрезке [0, 1] числовой оси расположены четыре точки: <i>a, b, c, d</i>.
Докажите, что найдётcя такая точка <i>x</i>, принадлежащая [0, 1], что <img align="absmiddle" src="/storage/problem-media/98260/problem_98260_img_2.png">
Коэффициенты квадратного уравнения <i>x</i>² + <i>px + q</i> = 0 изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?
В ряд стоят 30 сапог: 15 левых и 15 правых. Докажите, что среди некоторых десяти подряд стоящих сапог левых и правых поровну.
Решите систему уравнений:
(<i>x</i><sub>3</sub> + <i>x</i><sub>4</sub> + <i>x</i><sub>5</sub>)<sup>5</sup> = 3<i>x</i><sub>1</sub>,
(<i>x</i><sub>4</sub> + <i>x</i><sub>5</sub> + <i>x</i><sub>1</sub>)<sup>5</sup> = 3<i>x</i><sub>2</sub>,
(<i>x</i><sub>5</sub> + <i>x</i><sub>1</sub> + <i>x</i><sub>2</sub>)<sup>5</sup> = 3<i>x</i><sub>3</sub>,
(<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + <i>x</i&g...
Дано уравнение <i>x<sup>n</sup> – a</i><sub>1</sub><i>x</i><sup><i>n</i>–1</sup> – <i>a</i><sub>2</sub><i>x</i><sup><i>n</i>–2</sup> – ... – <i>a</i><sub><i>n</i>–1</sub><i>x – a<sub>n</sub></i> = 0, где <i>a</i><sub>1</sub> ≥ 0, <i>a</i><sub>2</sub> ≥ 0, <i>a<sub>n</sub></i> ≥ 0.
Доказать, что это уравнение не может иметь двух положительных корней.
В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.
Обсуждая в классе зимние каникулы, Саша сказал: "Теперь, после того как я слетал в Аддис-Абебу, я встречал Новый год во всех возможных полусферах Земли, кроме одной!"
В каком минимальном количестве мест встречал Новый год Саша?
Места, где Саша встречал Новый год, считайте точками на сфере. Точки на границе полусферы не считаются принадлежащими этой полусфере.
Вася и Петя играют в следующую игру. На доске написаны два числа: <sup>1</sup>/<sub>2009</sub> и <sup>1</sup>/<sub>2008</sub>. На каждом ходу Вася называет любое число <i>x</i>, а Петя увеличивает одно из чисел на доске (какое захочет) на <i>x</i>. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя?
Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, некоторые – направо, а остальные – кругом.
Всегда ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось поровну новобранцев, стоящих к нему лицом?
На плоскости нарисовано несколько точек. Докажите, что можно провести прямую так, чтобы расстояния от всех точек до неё были различными.
Матч Бавария – Спартак окончился со счетом 5 : 8. Докажите, что в матче был такой момент, когда Спартаку оставалось забить столько мячей, сколько Бавария уже забила к этому времени.
На плоскости дано n точек, никакие три из которых не лежат на одной прямой. Докажите, что их можно обозначить A<sub>1</sub>,A<sub>2</sub>,...,A<sub>n</sub>в таком порядке, чтобы замкнутая ломаная A<sub>1</sub>A<sub>2</sub>...A<sub>n</sub>была несамопересекающейся.
На плоскости отмечено 2000 точек. Можно ли провести прямую, по каждую сторону от которой лежит 1000 точек?
Выйдя на маршрут в 4 часа утра, альпинист Джеф Лоу к вечеру достиг пика "Свободная Корея". Переночевав на вершине, на следующий день он вышел в то же время и быстро спустился обратно по пути подъема. Докажите, что на маршруте есть такая точка, которую Лоу во время спуска и во время подъема проходил в одно и то же время суток.
Сборная России по футболу выиграла у сборной Туниса со счетом 9 : 5. Докажите, что по ходу матча был момент, когда сборной России оставалось забить столько голов, сколько уже забила сборная Туниса.
Матч между двумя футбольными командами закончился со счетом 8:5. Доказать, что был момент, когда первая команда забила столько же мячей, сколько второй оставалось забить.