Задача
На плоскости нарисовано несколько точек. Докажите, что можно провести прямую так, чтобы расстояния от всех точек до неё были различными.
Решение
Рассмотрим две из данных точек A и B. Пусть некоторая прямая l обладает тем свойством, что расстояния до неё от точек A и B равны. Если точки A и B лежат по одну сторону от прямой l, то прямая l параллельна прямой B. Если же точки A и B лежат по разные стороны от прямой l, то как нетрудно видеть, прямая l проходит через середину отрезка AB. Итак, если расстояния от двух точек до прямой одинаковы, то эта прямая либо параллельна прямой, соединяющей данные точки, либо она проходит через середину отрезка, соединяющего данные точки.
Рассмотрим все прямые, проходящие через всевозможные пары данных точек. Эти прямые образуют конечное множество L. Рассмотрим также середины всевозможных отрезков, соединяющих пары данных точек. Эти точки образуют конечное множество P. Выберем теперь прямую, не параллельную никакой прямой из множества L и не проходящую ни через одну из точек множества P (это возможно ввиду конечности множеств L и P).
Ответ
Ответ задачи отсутствует
Чтобы оставлять комментарии, войдите или зарегистрируйтесь