Олимпиадные задачи по теме «Теория множеств» для 8 класса - сложность 3 с решениями

Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества  <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub>, ...  так, чтобы при любом натуральном <i>k</i> сумма всех чисел, входящих в подмножество <i>A<sub>k</sub></i>, равнялась  <i>k</i> + 2013?

Можно ли раскрасить натуральные числа в 2009 цветов так, чтобы каждый цвет встречался бесконечное число раз, и не нашлось тройки чисел, покрашенных в три различных цвета, таких, что произведение двух из них равно третьему?

Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел<i> a </i>и<i> b </i>(<i> a>b </i>) хотя бы одно из чисел<i> a+b </i>или<i> a-b </i>тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми.

Каждый голосующий на выборах вносит в избирательный бюллетень фамилии<i> n </i>кандидатов. На избирательном участке находится<i> n+</i>1урна. После выборов выяснилось, что в каждой урне лежит по крайней мере один бюллетень и при всяком выборе(<i>n+</i>1)-го бюллетеня по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.

В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.

На прямой выбрано 100 множеств<i> A<sub>1</sub>, </i><i> A<sub>2</sub>, </i><i> .. , </i><i> A</i>100, каждое из которых является объединением 100 попарно непересекающихся отрезков. Докажите, что пересечение множеств<i> A<sub>1</sub>, </i><i> A<sub>2</sub>, </i><i> .. , </i><i> A</i>100является объединением не более 9901 попарно непересекающихся отрезков (точка также считается отрезком).

Числа от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа, не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными. Можно ли за несколько ходов добиться того, что все числа станут белыми?

Часть подмножеств некоторого конечного множества выделена. Каждое выделенное подмножество состоит в точности из2<i>k </i>элементов (<i> k </i>– фиксированное натуральное число). Известно, что в каждом подмножестве, состоящем не более чем из(<i>k+</i>1)<i><sup>2</sup> </i>элементов, либо не содержится ни одного выделенного подмножества, либо все в нем содержащиеся выделенные подмножества имеют общий элемент. Докажите, что все выделенные подмножества имеют общий элемент.

В классе 16 учеников. Каждый месяц учитель делит класс на две группы.

Какое наименьшее количество месяцев должно пройти, чтобы каждые два ученика в какой-то из месяцев оказались в разных группах?

В стране Нашии есть военные базы, соединённые дорогами. Набор дорог называется <i>важным</i>, если после закрытия этих дорог найдутся две базы, не соединённые путем. Важный набор называется <i>стратегическим</i>, если он не содержит меньшего важного набора. Докажите, что множество дорог, каждая из которых принадлежит ровно одному из двух различных стратегических наборов, образует важный набор.

В игре "Десант" две армии захватывают страну. Они ходят по очереди, каждым ходом занимая один из свободных городов. Первый свой город армия захватывает с воздуха, а каждым следующим ходом она может захватить любой город, соединённый дорогой с каким-нибудь уже занятым этой армией городом. Если таких городов нет, армия прекращает боевые действия (при этом, возможно, другая армия свои действия продолжает). Найдётся ли такая схема городов и дорог, что армия, ходящая второй, сможет захватить более половины всех городов, как бы ни действовала первая армия? (Число городов конечно, каждая дорога соединяет ровно два города.)

В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки происходит либо приём одного члена в партию, либо исключение из партии одного человека. В партячейке не может быть меньше трёх человек. Возвращаться к какому-либо из прежних составов партячейки запрещено уставом. Может ли к какому-то моменту оказаться, что все варианты состава ячейки реализованы?  

В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.

На плоскости даны 2005 точек (никакие три из которых не лежат на одной прямой). Каждые две точки соединены отрезком. Тигр и Осёл играют в следующую игру. Осёл помечает каждый отрезок одной из цифр, а затем Тигр помечает каждую точку одной из цифр. Осёл выигрывает, если найдутся две точки, помеченные той же цифрой, что и соединяющий их отрезок, и проигрывает в противном случае. Доказать, что при правильной игре Осёл выиграет.

На прямоугольном экране размером <i>m</i>×<i>n</i>, разбитом на единичные клетки, светятся более  (<i>m</i> – 1)(<i>n</i> – 1)  клеток. Если в каком-либо квадрате 2×2 не светятся три клетки, то через некоторое время погаснет и четвёртая. Докажите, что тем не менее на экране всегда будет светиться хотя бы одна клетка.

Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения<i>n</i>числа<i>n</i>,<i>n</i>- 50,<i>n</i>+ 1987 принадлежали трём разным подмножествам?

В классе организуется турнир по перетягиванию каната. В турнире ровно по одному разу должны участвовать всевозможные команды, которые можно составить из учащихся этого класса (кроме команды всего класса). Доказать, что каждая команда учащихся будет соревноваться с командой всех остальных учащихся класса.

Даны 1985 множеств, каждое из которых состоит из 45 элементов, причём объединение любых двух множеств содержит ровно 89 элементов.

Сколько элементов содержит объединение всех этих 1985 множеств?

Найти наименьшее<i>n</i>такое, что любой выпуклый 100-угольник можно получить в виде пересечения<i>n</i>треугольников. Докажите, что для меньших<i>n</i>это можно сделать не с любым выпуклым 100-угольником.

В городе "Многообразие" живут<i>n</i>жителей, любые два из которых либо дружат, либо враждуют между собой. Каждый день не более чем один житель может начать новую жизнь: перессориться со всеми своими друзьями и подружиться со всеми своими врагами. Доказать, что все жители могут подружиться. <i>Примечание.</i>Если<i>A</i>— друг<i>B</i>, а<i>B</i>— друг<i>C</i>, то<i>A</i>— также друг<i>C</i>. Предполагается также, что среди любых троих жителей хотя бы двое дружат между собой.

На кафтане площадью 1 размещены<nobr>5 заплат,</nobr>площадь каждой из которых не<nobr>меньше <sup>1</sup>/<sub>2</sub>.</nobr>Докажите, что найдутся две заплаты, площадь общей части которых не<nobr>меньше <sup>1</sup>/<sub>5</sub>.</nobr>

В множестве, состоящем из <i>n</i> элементов, выбрано 2<sup><i>n</i>–1</sup> подмножеств, каждые три из которых имеют общий элемент.

Докажите, что все эти подмножества имеют общий элемент.

Некоторые из чисел 1, 2, 3, ..., $n$ покрашены в красный цвет так, что выполняется условие: если для красных чисел $a, b, c$ (не обязательно различных)  $a(b - c)$  делится на $n$, то  $b = c$.

Докажите, что красных чисел не больше чем φ($n$).

Петя и ещё 9 человек играют в такую игру: каждый бросает игральную кость. Игрок получает приз, если он выбросил число очков, которое не удалось выбросить никому больше.

  а) Какова вероятность того, что Петя получит приз?

  б) Какова вероятность того, что хоть кто-то получит приз?

Петя подсчитал количество всех возможных <i>m</i>-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2<i>m</i>-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка