Олимпиадные задачи по теме «Комбинаторика» для 2-5 класса - сложность 2 с решениями
Можно ли нарисовать 1006 различных 2012-угольников, у которых все вершины общие, но при этом ни у каких двух нет ни одной общей стороны?
Для игры в шляпу Надя хочет разрезать лист бумаги на 48 одинаковых прямоугольников. Какое наименьшее количество разрезов ей придется сделать, если любые куски бумаги можно перекладывать, но нельзя сгибать, а Надя способна резать одновременно сколько угодно слоёв бумаги? (Каждый разрез – прямая линия от края до края куска.)
На рисунке приведены три примера показаний исправных электронных часов. Сколько палочек могут перестать работать, чтобы время всегда можно было определить однозначно? <div align="center"><img src="/storage/problem-media/117005/problem_117005_img_2.gif"></div>
Вася выписал все слова (не обязательно осмысленные), которые получаются вычеркиванием ровно двух букв из слова <i>ИНТЕГРИРОВАНИЕ</i>, а Маша сделала то же самое со словом <i>СУПЕРКОМПЬЮТЕР</i>. У кого получилось больше слов?
Боря и Миша едут в поезде и считают столбы за окном: "один, два, ...". Боря не выговаривает букву "Р", поэтому при счете он пропускает числа, в названии которых есть буква "Р", а называет сразу следующее число без буквы "Р". Миша не выговаривает букву "Ш", поэтому пропускает числа с буквой "Ш". У Бори последний столб получил номер "сто". Какой номер этот столб получил у Миши?
В Совершенном городе шесть площадей. Каждая площадь соединена прямыми улицами ровно с тремя другими площадями. Никакие две улицы в городе не пересекаются. Из трёх улиц, отходящих от каждой площади, одна проходит внутри угла, образованного двумя другими. Начертите возможный план такого города.
В норке живёт семья из 24 мышей. Каждую ночь ровно четыре из них отправляются на склад за сыром.
Может ли так получиться, что в некоторый момент времени каждая мышка побывала на складе с каждой ровно по одному разу?
Как, не отрывая карандаша от бумаги, провести шесть отрезков таким образом, чтобы оказались зачёркнутыми 16 точек, расположенных в вершинах квадратной сетки 4×4?
На кошачьей выставке каждый посетитель погладил ровно трех кошек. При этом оказалось, что каждую кошку погладили ровно три посетителя. Докажите, что посетителей было ровно столько же, сколько кошек.
Школьник сказал своему приятелю Вите Иванову:
– У нас в классе тридцать пять человек. И представь, каждый из них дружит ровно с одиннадцатью одноклассниками...
– Не может этого быть, – сразу ответил Витя Иванов, победитель математической олимпиады.
Почему он так решил?
В детский сад завезли карточки для обучения чтению: на некоторых написано "МА", на остальных – "НЯ". Каждый ребёнок взял три карточки и стал составлять из них слова. Оказалось, что слово "МАМА" могут сложить из своих карточек 20 детей, слово "НЯНЯ" – 30 детей, а слово "МАНЯ" – 40 детей. У скольких ребят все три карточки одинаковы?
Можно ли 77 телефонов соединить между собой проводами так, чтобы каждый был соединён ровно с пятнадцатью?
В городе Честервилле солнце светит нечасто: среди любых пяти дней подряд есть хотя бы четыре пасмурных. Зато среди любых шести дней подряд найдётся хотя бы один солнечный. Сколько солнечных дней может быть в Честервилле в сентябре? Укажите все возможные варианты.
В Тридевятом царстве на каждом перекрёстке сходится ровно три дорожки. Было у царя три сына, старшие умные, а младший Иван – дурак. Послал старик сыновей за молодильными яблоками. Старший, выйдя из дворца, на первом перекрёстке свернул налево, на следующем направо, потом налево, снова направо – и дошёл до волшебной яблони. Средний на первом перекрёстке свернул направо, потом налево, снова направо, снова налево – и тоже дошёл до этой яблони. А Иван на всех перекрёстках поворачивал направо, три раза повернул да и пришёл обратно во дворец несолоно хлебавши. Нарисуйте пример, как может выглядеть схема дорожек в Тридевятом царстве, если известно, что и от царского дворца, и от яблони отходит ровно по одной дорожке.
Сто сидений карусели расположены по кругу через равные промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья одного и того же цвета расположены подряд и пронумерованы 1, 2, 3, ... по часовой стрелке. Синее сиденье № 7 противоположно красному № 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели жёлтых сидений, сколько синих и сколько красных.
У каждого из тридцати шестиклассников есть одна ручка, один карандаш и одна линейка. После их участия в олимпиаде оказалось, что 26 учеников потеряли ручку, 23 – линейку и 21 – карандаш. Найдите наименьшее возможное количество шестиклассников, потерявших все три предмета.
Из 101 далматинца у 29 пятно только на левом ухе, у 17 – только на правом ухе, а у 22 далматинцев нет пятен на ушах.
Сколько далматинцев имеют пятно на правом ухе?
Мария Ивановна покупает 16 шариков для Последнего звонка. В магазине есть шарики трёх цветов: синего, красного и зелёного. Сколько существует вариантов различных покупок 16 шариков, если Мария Ивановна хочет, чтобы шарики каждого цвета составляли не менее четверти от количества всех шариков?
В 15-этажном доме имеется лифт с двумя кнопками: "+7" и "–9" (см. задачу <a href="https://mirolimp.ru/tasks/131354">131354</a>). Можно ли проехать с 3-го этажа на 12-й?
Лифт в 100-этажном доме имеет 2 кнопки: "+7" и "–9" (первая поднимает лифт на 7 этажей, вторая опускает на 9).Можно ли проехать:
a) с 1-го на 2-й;
б) со 2-го на 1-й;
в) с любого на любой этаж?