Олимпиадные задачи по теме «Аффинная геометрия» для 11 класса
Аффинная геометрия
НазадВерно ли, что при любом <i>n</i> правильный 2<i>n</i>-угольник является проекцией некоторого многогранника, имеющего не более, чем <i>n</i> + 2 грани?
Дан четырёхугольник <i>ABCD</i>, противоположные стороны которого пересекаются в точках <i>P</i> и <i>Q</i>. Две прямые, проходящие через эти точки, пересекают стороны четырёхугольника в четырёх точках, являющихся вершинами параллелограмма. Докажите, что центр этого параллелограмма лежит на прямой, соединяющей середины диагоналей <i>ABCD</i>.
Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?
Вычислите $$\int \limits_0^{\pi} \big(|\sin(1999x)|-|\sin(2000x)|\big) , dx.$$
В пространстве даны 200 точек. Каждые две из них соединены отрезком, причём отрезки не пересекаются друг с другом. Первый игрок красит каждый отрезок в один из <i>k</i> цветов, затем второй игрок красит в один из тех же цветов каждую точку. Если найдутся две точки и отрезок между ними, окрашенные в один цвет, выигрывает первый игрок, в противном случае второй. Докажите, что первый может гарантировать себе выигрыш, если
а) <i>k</i> = 7; б) <i>k</i> = 10.
На плоскости даны две прямые, пересекающиеся под острым углом. В направлении одной из прямых производится сжатие с коэффициентом 1/2. Доказать, что найдется точка, расстояние от которой до точки пересечения прямых увеличится.
В треугольнике $ABC$ вписанная окружность $\omega$ с центром $I$ касается $BC$ в точке $D$. Точка $P$ – проекция ортоцентра треугольника $ABC$ на медиану из вершины $A$. Докажите, что окружности $AIP$ и $\omega$ высекают на $AD$ равные отрезки
Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $K$ – точка пересечения $BC$ с внешней биссектрисой угла $A$. Прямая $KI$ пересекает внешние биссектрисы углов $B$ и $C$ в точках $X$ и $Y$. Докажите, что $\angle BAX=\angle CAY$.
В неравнобедренном треугольнике $ABC$ точки $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. Биссектриса угла $C$ пересекает прямые $A_0C_0$ и $B_0C_0$ в точках $B_1$ и $A_1$. Докажите, что прямые $AB_1$, $BA_1$ и $A_0B_0$ пересекаются в одной точке.
Дан треугольник <i>ABC</i> и прямая <i>l</i>, пересекающая <i>BC, CA</i> и <i>AB</i> в точках <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> соответственно. Точка <i>A'</i> – середина отрезка, соединяющего проекции <i>A</i><sub>1</sub> на <i>AB</i> и <i>AC</i>. Аналогично определяются точки <i>B'</i> и <i>C'</i>.
а) Докажите, что <i>A', B'</i> и <i>C'</i> лежат на некоторой прямой <i>l'</i>.
б) Докажите, что, если <i>l</i> проходит через центр описанной окружности треугольника <...