Олимпиадные задачи по теме «Теория чисел. Делимость» для 8 класса - сложность 2 с решениями
Теория чисел. Делимость
НазадТри натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?
Натуральные числа <i>a, b</i> и <i>c</i>, где <i>c</i> ≥ 2, таковы, что <sup>1</sup>/<sub><i>a</i></sub> + <sup>1</sup>/<sub><i>b</i></sub> = <sup>1</sup>/<sub><i>c</i></sub>. Докажите, что хотя бы одно из чисел <i>a + c, b + c</i> – составное.
Даны натуральные числа <i>M</i> и <i>N</i>, большие десяти, состоящие из одинакового количества цифр и такие, что <i>M</i> = 3<i>N</i>. Чтобы получить число <i>M</i>, надо в числе <i>N</i> к одной из цифр прибавить 2, а к каждой из остальных цифр прибавить по нечётной цифре. Какой цифрой могло оканчиваться число <i>N</i>?
Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?
На какую наибольшую степень тройки делится произведение 3·33·333·...·3333333333 ?
Известно, что числа <i>а, b, c</i> и <i>d</i> – целые и <img align="absmiddle" src="/storage/problem-media/116922/problem_116922_img_2.gif">. Может ли выполняться равенство <i>аbcd</i> = 2012?
Под ёлкой лежат 2012 шишек. Винни-Пух и ослик Иа-Иа играют в игру: по очереди берут себе шишки. Своим ходом Винни-Пух берёт одну или четыре шишки, а Иа-Иа – одну или три. Первым ходит Пух. Проигравшим считается тот, у кого нет хода. Кто из игроков сможет гарантированно победить, как бы ни играл соперник?
В числе не меньше 10 разрядов, в его записи используются только две разные цифры, причём одинаковые цифры не стоят рядом.
На какую наибольшую степень двойки может делиться такое число?
Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>. (Например, <i>C</i>(10) = 2, <i>C</i>(11) = 1, <i>C</i>(12) = 2.)
Конечно или бесконечно число таких пар натуральных чисел (<i>a, b</i>), что <i>a ≠ b</i> и <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?
Может ли число (<i>x</i>² + <i>x</i> + 1)² + (<i>y</i>² + <i>y</i> + 1)² при каких-то целых <i>x</i> и <i>y</i> оказаться точным квадратом?
Может ли произведение трёх трёхзначных чисел, для записи которых использовано девять различных цифр, оканчиваться четырьмя нулями?
Натуральные числа <i>а, b, c</i> и <i>d</i> таковы, что <i>ab = cd</i>. Может ли число <i>a + b + c + d</i> оказаться простым?
В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?
Является ли простым число 2011·2111 + 2500?
Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?
На доске написаны четыре трёхзначных числа, в сумме дающие 2012. Для записи их всех были использованы только две различные цифры.
Приведите пример таких чисел.
Назовём натуральные числа <i>a</i> и <i>b</i> <i>друзьями</i>, если их произведение является точным квадратом. Докажите, что если <i>a</i> – друг <i>b</i>, то <i>a</i> – друг НОД(<i>a, b</i>).
Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.
Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?
В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так, что каждая команда первой группы одержала ровно <i>n</i> побед, а каждая команда второй группы – ровно <i>m</i> побед. Могло ли оказаться, что <i>m</i> ≠ <i>n</i>?
Петя выбрал натуральное число <i>a</i> > 1 и выписал на доску пятнадцать чисел 1 + <i>a</i>, 1 + <i>a</i>², 1 + <i>a</i>³, ..., 1 + <i>a</i><sup>15</sup>. Затем он стёр несколько чисел так, что каждые два оставшихся числа взаимно просты. Какое наибольшее количество чисел могло остаться на доске?
Последовательность чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... задана условиями <i>a</i><sub>1</sub> = 1, <i>a</i><sub>2</sub> = 143 и <img align="absmiddle" src="/storage/problem-media/116589/problem_116589_img_2.gif"> при всех <i>n</i> ≥ 2.
Докажите, что все члены последовательности – целые числа.
Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.
Из любого ли натурального числа <i>A</i> при помощи таких операций можно получить число <i>A</i> + 1?
(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)
Найдите все такие тройки простых чисел <i>p, q, r</i>, что четвёртая степень каждого из них, уменьшенная на 1, делится на произведение двух остальных.
Найдите все такие числа <i>a</i>, что для любого натурального <i>n</i> число <i>an</i>(<i>n</i> + 2)(<i>n</i> + 4) будет целым.
Сколько существует таких натуральных <i>n</i>, не превосходящих 2012, что сумма 1<sup><i>n</i></sup> + 2<sup><i>n</i></sup> + 3<sup><i>n</i></sup> + 4<sup><i>n</i></sup> оканчивается на 0?