Олимпиадные задачи по математике для 9 класса - сложность 2-5 с решениями

Окружность касается боковых сторон трапеции $ABCD$ в точках $B$ и $C$, а её центр лежит на $AD$. Докажите, что диаметр окружности меньше средней линии трапеции.

Митя купил на день рождения круглый торт диаметром 36 сантиметров и 13 тоненьких свечек. Мите не нравится, когда свечки стоят слишком близко, поэтому он хочет поставить их на расстоянии не меньше 10 сантиметров друг от друга. Поместятся ли все свечки на торте?

В прямоугольном треугольнике <i>ABC</i> с прямым углом <i>C</i> провели биссектрисы <i>AK</i> и <i>BN</i>, на которые опустили перпендикуляры <i>CD</i> и <i>CE</i> из вершины прямого угла. Докажите, что длина отрезка <i>DE</i> равна радиусу вписанной окружности.

Четырёхугольник <i>ABCD</i>, в котором  <i>AB = BC</i>  и  <i>AD = CD</i>,  вписан в окружность. Точка <i>M</i> лежит на меньшей дуге <i>CD</i> этой окружности. Прямые <i>BM</i> и <i>CD</i> пересекаются в точке <i>P</i>, а прямые <i>AM</i> и <i>BD</i> – в точке <i>Q</i>. Докажите, что  <i>PQ || AC</i>.

В выпуклой <i>n</i>-угольной призме равны все боковые грани. При каких <i>n</i> эта призма обязательно прямая?

Пусть <i>C</i> – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке <i>B</i>, а касательная в <i>C</i> к β пересекает α в точке <i>A</i>, причём <i>A</i> и <i>B</i> отличны от <i>C</i>, и угол <i>ACB</i> тупой. Прямая <i>AB</i> вторично пересекает α и β в точках <i>N</i> и <i>M</i> соответственно. Докажите, что  2<i>MN < AB</i>.

Дан треугольник <i>ABC</i>. На продолжениях сторон <i>AB</i> и <i>CB</i> за точку <i>B</i> взяты соответственно точки <i>C</i><sub>1</sub> и <i>A</i><sub>1</sub> так, что  <i>AC = A</i><sub>1</sub><i>C = AC</i><sub>1</sub>.

Докажите, что описанные окружности треугольников <i>ABA</i><sub>1</sub> и <i>CBC</i><sub>1</sub> пересекаются на биссектрисе угла <i>B</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка