Олимпиадные задачи по математике для 10 класса

Дан треугольник <i>АВС.</i> Точка <i>О</i><sub>1</sub> – центр прямоугольника <i>ВСDE</i>, построенного так, что сторона <i>DE</i> прямоугольника содержит вершину <i>А</i> треугольника. Точки <i>О</i><sub>2</sub> и <i>О</i><sub>3</sub> являются центрами прямоугольников, построенных аналогичным образом на сторонах <i>АС</i> и <i>АВ</i> соответственно. Докажите, что прямые <i>АО</i><sub>1</sub>, <i>ВО</i><sub>2</sub> и <i>СО</i><sub>3</sub> пересекаются в одной точке.

B треугольнике <i>ABC</i> точка <i>O</i> – центр описанной окружности. Прямая <i>a</i> проходит через середину высоты треугольника, опущенной из вершины <i>A</i>, и параллельна <i>OA</i>. Aналогично определяются прямые <i>b</i> и <i>c</i>. Докажите, что эти три прямые пересекаются в одной точке.

Пусть <i>O</i> – центр правильного треугольника <i>ABC</i>. Из произвольной точки <i>P</i> плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через <i>M</i> точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что <i>M</i> – середина отрезка <i>PO</i>.

Дан выпуклый четырехугольник <i>ABCD</i>. Прямые <i>BC</i> и <i>AD</i> пересекаются в точке <i>O</i>, причём <i>B</i> лежит на отрезке <i>O</i> и <i>A</i> на отрезке <i>OD. I</i> – центр вписанной окружности треугольника <i>OAB, J</i> – центр вневписанной окружности треугольника <i>OCD</i>, касающейся стороны <i>CD</i> и продолжений двух других сторон. Перпендикуляры, опущенные из середины отрезка <i>IJ</i> на прямые <i>BC</i> и <i>AD</i>, пересекают соответствующие стороны четырёхугольника (не продолжения) в точках <i>X</i> и <i>Y</i>. Доказать, что отрезок <i>XY</i> делит периметр четыр...

Пусть <i>P</i> – точка пересечения диагоналей четырёхугольника <i>ABCD, M</i> – точка пересечения прямых, соединяющих середины его противоположных сторон, <i>O</i> – точка пересечения серединных перпендикуляров к диагоналям, <i>H</i> – точка пересечения прямых, соединяющих ортоцентры треугольников <i>APD</i> и <i>BPC, APB</i> и <i>CPD</i>. Доказать, что <i>M</i> – середина <i>OH</i>.

Имеется треугольник $ABC$ и линейка, на которой отмечены отрезки, равные сторонам треугольника. Постройте этой линейкой ортоцентр треугольника, образованного точками касания вписанной в треугольник $ABC$ окружности.

Дан неравнобедренный остроугольный треугольник <i>ABC</i>. Точки <i>A</i><sub>1</sub>, <i>A</i><sub>2</sub> симметричны основаниям внутренней и внешней биссектрис угла <i>A</i> относительно середины стороны <i>BC</i>. На отрезке <i>A</i><sub>1</sub><i>A</i><sub>2</sub> как на диаметре построена окружность α. Аналогично определяются окружности β и γ. Докажите, что эти три окружности пересекаются в двух точках.

Дан треугольник <i>ABC</i>. Рассмотрим три окружности, первая из которых касается описанной окружности Ω в вершине <i>A</i>, а вписанной окружности ω внешним образом в какой-то точке <i>A</i><sub>1</sub>. Аналогично определяются точки <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub>.

  а) Докажите, что прямые <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub> пересекаются в одной точке.

  б) Пусть <i>A</i><sub>2</sub> – точка касания ω со стороной <i>BC</i>. Докажите, что прямые <i>AA</i><sub>1</sub> и <i>AA</i><sub>2</sub&g...

Около треугольника <i>ABC</i> описали окружность. <i>A</i><sub>1</sub> – точка пересечения с нею прямой, параллельной <i>BC</i> и проходящей через <i>A</i>. Точки <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> определяются аналогично. Из точек <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> опустили перпендикуляры на <i>BC, CA, AB</i> соответственно. Докажите, что эти три перпендикуляра пересекаются в одной точке.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка