Олимпиадные задачи по математике для 9 класса

Существует ли конечное слово из букв русского алфавита, в котором нет двух соседних одинаковых подслов, но таковые появляются при приписывании (как справа, так и слева) любой буквы русского алфавита.Комментарий.<i>Словом</i>мы называем любую последовательность букв русского алфавита, не обязательно осмысленную,<i>подсловом</i>называется любой фрагмент слова. Например, АБВШГАБ - слово, а АБВ, Ш, ШГАБ - его подслова.

В углу шахматной доски размером <i>n×n</i> полей стоит ладья. При каких <i>n</i>, чередуя горизонтальные и вертикальные ходы, она может за <i>n</i>² ходов побывать на всех полях доски и вернуться на место? (Учитываются только поля, на которых ладья останавливалась, а не те, над которыми она проносилась во время хода.)

В стране несколько городов, соединённых дорогами с односторонним и двусторонним движением. Известно, что из каждого города в любой другой можно проехать ровно одним путём, не проходящим два раза через один и тот же город. Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога не соединяла два города из одной губернии.

Система укреплений состоит из блиндажей. Некоторые из блиндажей соединены траншеями, причём из каждого блиндажа можно перебежать в какой-нибудь другой. В одном из блиндажей спрятался пехотинец. Пушка может одним выстрелом накрыть любой блиндаж. В каждом промежутке между выстрелами пехотинец обязательно перебегает по одной из траншей в соседний блиндаж (даже если по соседнему блиндажу только что стреляла пушка, пехотинец может туда перебежать). Назовём систему <i>надёжной</i>, если у пушки нет гарантированной стратегии поражения пехотинца (то есть такой последовательности выстрелов, благодаря которой пушка поразит пехотинца независимо от его начального местонахождения и последующих передвижений). <div align="center"><img src="/storage/problem-media/1050...

Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)<img src="/storage/problem-media/103816/problem_103816_img_2.gif">

Из натурального числа вычли сумму его цифр, из полученного числа снова вычли сумму его (полученного числа) цифр и т.д. После одиннадцати таких вычитаний получился нуль. С какого числа начинали?

За два года завод снизил объём выпускаемой продукции на 51%. При этом каждый год объём выпускаемой продукции снижался на одно и то же число процентов. На сколько?

Существуют ли такие иррациональные числа <i>a</i> и <i>b</i>, что  <i>a </i> > 1,  <i>b</i> > 1,  и  [<i>a<sup>m</sup></i>]  отлично от  [<i>b<sup>n</sup></i>]  при любых натуральных числах <i>m</i> и <i>n</i>?

Натуральные числа <i>a, b, c, d</i> таковы, что <i>ad – bc</i> > 1.  Докажите, что хотя бы одно из чисел <i>a, b, c, d</i> не делится на  <i>ad – bc</i>.

Дан куб с ребром длины <i>n</i> см. В нашем распоряжении имеется длинный кусок изоляционной ленты шириной 1 см. Требуется обклеить куб лентой, при этом лента может свободно переходить через ребро на другую грань, по грани она должна идти по прямой параллельно ребру и не свисать с грани вбок. На сколько кусков необходимо разрезать ленту, чтобы обклеить куб?

Куб размером10×10×10 сложен из 500 чёрных и 500 белых кубиков в шахматном порядке (кубики, примыкающие друг к другу гранями, имеют различные цвета). Из этого куба вынули 100 кубиков так, чтобы в каждом из 300 рядов размером1×1×10, параллельных какому-нибудь ребру куба, не хватало ровно одного кубика. Докажите, что число вынутых чёрных кубиков делится на 4.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка