Олимпиадные задачи по математике для 8 класса - сложность 4 с решениями
Дан треугольник <i>ABC</i>. Прямая <i>l</i> касается вписанной в него окружности. Обозначим через <i>l<sub>a</sub>, l<sub>b</sub>, l<sub>c</sub></i> прямые, симметричные <i>l</i> относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику <i>ABC</i>.
Противоположные стороны выпуклого шестиугольника параллельны. Hазовём <i>высотой</i> такого шестиугольника отрезок с концами на прямых, содержащих противолежащие стороны и перпендикулярный им. Докажите, что вокруг этого шестиугольника можно описать окружность тогда и только тогда, когда его высоты можно параллельно перенести так, чтобы они образовали треугольник.
Постройте четырёхугольник, в который можно вписать и около которого можно описать окружность, по радиусам этих окружностей и углу между диагоналями.
Дан треугольник <i>ABC</i> и точки <i>X, Y</i>, не лежащие на его описанной окружности Ω. Пусть <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> – проекции <i>X</i> на <i>BC, CA, AB</i>, а <i>A</i><sub>2</sub>, <i>B</i><sub>2</sub>, <i>C</i><sub>2</sub> – проекции <i>Y</i>. Докажите, что перпендикуляры, опущенные из <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> на, соответственно, <i>B</i><sub>2</sub><i>C</i><sub>2</sub>, <i>C</...
Стороны<i> BC </i>и<i> AC </i>треугольника<i> ABC </i>касаются соответствующих вневписанных окружностей в точках<i> A<sub>1</sub> </i>,<i> B<sub>1</sub> </i>. Пусть<i> A<sub>2</sub> </i>,<i> B<sub>2</sub> </i>— ортоцентры треугольников<i> CAA<sub>1</sub> </i>и<i> CBB<sub>1</sub> </i>. Докажите, что прямая<i> A<sub>2</sub>B<sub>2</sub> </i>перпендикулярна биссектрисе угла<i> C </i>.
В однокруговом футбольном турнире играли  <i>n</i> > 4 команд. За победу давалось 3 очка, за ничью 1, за проигрыш 0. Оказалось, что все команды набрали поровну очков.
а) Докажите, что найдутся четыре команды, имеющие поровну побед, поровну ничьих и поровну поражений.
б) При каком наименьшем <i>n</i> могут не найтись пять таких команд?
Радиус описанной окружности треугольника<i> ABC </i>равен радиусу окружности, касающейся стороны<i> AB </i>в точке<i> C' </i>и продолжений двух других сторон в точках<i> A' </i>и<i> B' </i>. Докажите, что центр описанной окружности треугольника<i> ABC </i>совпадает с ортоцентром (точкой пересечения высот) треугольника<i> A'B'C' </i>.
Пусть<i> M </i>– точка пересечения медиан треугольника<i> ABC </i>. На перпендикулярах, опущенных из<i> M </i>на стороны<i> BC </i>,<i> AC </i>и<i> AB </i>, взяты точки<i> A</i>1,<i> B</i>1и<i> C</i>1соответственно, причём<i> A</i>1<i>B</i>1<i> <img src="/storage/problem-media/108095/problem_108095_img_2.gif"> MC </i>и<i> A</i>1<i>C</i>1<i> <img src="/storage/problem-media/108095/problem_108095_img_2.gif"> MB </i>. Докажите, что точка<i> M </i>является точкой пересечения медиан и в треугольнике<i> A</i>1<i>B</i>1<i>C</i>1.
В остроугольном треугольнике $ABC$ $O$ – центр описанной окружности, $BM$ – медиана, $BH$ – высота. Окружности $AOB$ и $BHC$ повторно пересекаются в точке $E$, а окружности $AHB$ и $BOC$ – в точке $F$. Докажите, что $ME=MF$.
В некотором государстве 32 города, каждые два из которых соединены дорогой с односторонним движением. Министр путей сообщения, тайный злодей, решил так организовать движение, что, покинув любой город, в него нельзя будет вернуться. Для этого он каждый день, начиная с 1 июня 2021 года, может менять направление движения на одной из дорог. Докажите, что он сможет добиться своего к 2022 году (то есть за 214 дней).
В треугольнике <i>ABC</i> отметили точки <i>A'</i>, <i>B'</i> касания сторон <i>BC, AC</i> c вписанной окружностью и точку <i>G</i> пересечения отрезков <i>AA'</i> и <i>BB'</i>. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки.