Олимпиадные задачи по математике для 2-7 класса
В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:
а) за 5 или менее;
б) за 4 или менее;
в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>
Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:<div align="center"><img src="/storage/problem-media/116812/problem_116812_img_2.gif"></div> Могло ли такое быть?
На клетчатом листе бумаги было закрашено несколько клеток так, что получившаяся фигура не имела осей симметрии. Ваня закрасил ещё одну клетку. Могло ли у получившейся фигуры оказаться четыре оси симметрии?
Квадрат 3×3 заполнен цифрами так, как показано на рисунке слева. Разрешается ходить по клеткам этого квадрата, переходя из клетки в соседнюю (по стороне), но ни в какую клетку не разрешается попадать дважды.
<div align="center"><img align="middle" src="/storage/problem-media/116609/problem_116609_img_2.gif"></div> Петя прошёл, как показано на рисунке справа, и выписал по порядку все цифры, встретившиеся по пути, – получилось число 84937561. Нарисуйте другой путь так, чтобы получилось число побольше (чем больше, тем лучше).
На вертикальную ось надели несколько колес со спицами. Вид сверху изображен на левом рисунке.
<center><img align="absmiddle" src="/storage/problem-media/115380/problem_115380_img_2.gif"></center> После этого колеса повернули. Новый вид сверху изображен на рисунке справа. Могло ли колес быть: а) три; б) два?
Используя в качестве чисел любое количество монет достоинством 1, 2, 5 и 10 рублей, а также (бесплатные) скобки и знаки четырех арифметических действий, составьте выражение со значением 2009, потратив как можно меньше денег.
На каждом из двух огородов Дед посадил по одинаковому количеству репок. Если в огород заходит Внучка, то она выдергивает ровно ⅓ репок, имеющихся к этому моменту. Если заходит Жучка, то она выдергивает <sup>1</sup>/<sub>7</sub> репок, а если заходит Мышка, то она выдергивает только <sup>1</sup>/<sub>12</sub> репок. К концу недели на первом огороде осталось 7 репок, а на втором – 4. Заходила ли Жучка во второй огород?
Любознательный турист хочет прогуляться по улицам Старого города от вокзала (точка <i>A</i> на плане) до своего отеля (точка <i>B</i>). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет. <div align="center"><img align="absmiddle" src="/storage/problem-media/111897/problem_111897_img_2.gif"></div>
Число умножили на сумму его цифр и получили 2008. Найдите это число.
Впишите в данный полукруг правильный треугольник наибольшего периметра.
От вулканостанции до вершины вулкана Стромболи надо идти 4 часа по дороге, а затем – 4 часа по тропинке. На вершине расположено два кратера. Первый кратер 1 час извергается, потом 17 часов молчит, потом опять 1 час извергается, и т.д. Второй кратер 1 час извергается, 9 часов молчит, 1 час извергается, и т.д. Во время извержения первого кратера опасно идти и по тропинке, и по дороге, а во время извержения второго опасна только тропинка. Ваня увидел, что ровно в 12 часов оба кратера начали извергаться одновременно. Сможет ли он когда-нибудь подняться на вершину вулкана и вернуться назад, не рискуя жизнью?
Кооператив получает яблочный и виноградный сок в одинаковых бидонах и выпускает яблочно-виноградный напиток в одинаковых банках. Одного бидона яблочного сока хватает ровно на 6 банок напитка, а одного бидона виноградного – ровно на 10. Когда рецептуру напитка изменили, одного бидона яблочного сока стало хватать ровно на 5 банок напитка. На сколько банок напитка хватит теперь одного бидона виноградного сока? (Напиток водой не разбавляется.)
В выборах в 100-местный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов. После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т. п. не было) и каждая партия получила целое число мест. При этом Партия любителей математики набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?
Из Цветочного города в Солнечный ведёт шоссе длиной 12 км. На втором километре этого шоссе расположен железнодорожный переезд, который три минуты закрыт и три минуты открыт и т.д., а на четвёртом и на шестом километрах расположены светофоры, которые две минуты горят красным светом и три минуты – зелёным и т.д. Незнайка выезжает из Цветочного города в Солнечный в тот момент, когда переезд только что закрылся, а оба светофора только что переключились на красный. За какое наименьшее время (в минутах) он сможет доехать до Солнечного города, не нарушая правил, если его электромобиль едет по шоссе с постоянной скоростью (Незнайка не умеет ни тормозить, ни увеличивать скорость)?
Ваня задумал простое трёхзначное число, все цифры которого различны.
На какую цифру оно может оканчиваться, если его последняя цифра равна сумме первых двух?
Расставьте скобки и знаки арифметических действий так, чтобы получилось верное равенство: <img align="absMIDDLE" src="/storage/problem-media/103887/problem_103887_img_2.gif">
В написанном на доске примере на умножение хулиган Петя исправил две цифры. Получилось 4·5·4·5·4 = 2247.
Восстановите исходный пример.
Для постройки типового дома не хватало места. Архитектор изменил проект: убрал два подъезда и добавил три этажа. При этом количество квартир увеличилось. Он обрадовался и решил убрать ещё два подъезда и добавить ещё три этажа.
Могло ли при этом квартир стать даже меньше, чем в типовом проекте? (В каждом подъезде одинаковое число этажей и на всех этажах во всех подъездах одинаковое число квартир.)
Приходя в тир, игрок вносит в кассу 100 рублей. После каждого удачного выстрела количество его денег увеличивается на 10%, а после каждого промаха – уменьшается на 10%. Могло ли после нескольких выстрелов у него оказаться 80 рублей 19 копеек?
Наташа и Инна купили по одинаковой коробке чая в пакетиках. Известно, что одного пакетика хватает на две или три чашки чая. Этой коробки Наташе хватило на 41 чашку чая, а Инне – на 58. Сколько пакетиков было в коробке?
На кольцевой дороге расположены четыре бензоколонки:<i>A</i>,<i>B</i>,<i>C</i>и<i>D</i>. Расстояние между<i>A</i>и<i>B</i> — 50 км, между<i>A</i>и<i>C</i> — 40 км, между<i>C</i>и<i>D</i> — 25 км, между<i>D</i>и<i>A</i> — 35 км (все расстояния измеряются вдоль кольцевой дороги в кратчайшую сторону). а) Приведите пример расположения бензоколонок (с указанием расстояний между ними), удовлетворяющий условию задачи.
б) Найдите расстояние между <i>B</i> и <i>C</i> (укажите все возможности).
В тесте к каждому вопросу указаны пять вариантов ответа. Отличник отвечает на все вопросы правильно. Когда двоечнику удаётся списать, он отвечает правильно, а в противном случае – наугад (то есть среди несписанных вопросов он правильно отвечает на ⅕ часть). Всего двоечник правильно ответил на половину вопросов. Какую долю ответов ему удалось списать?
В Мексике экологи добились принятия закона, по которому каждый автомобиль хотя бы один день в неделю не должен ездить (владелец сообщает полиции номер автомобиля и "выходной" день недели этого автомобиля). В некоторой семье все взрослые желают ездить ежедневно (каждый – по своим делам!). Сколько автомобилей (как минимум) должно быть в семье, если взрослых в ней
а) 5 человек? б) 8 человек?
Расставьте скобки так, чтобы получилось верное равенство:<div align="CENTER"> 1 - 2<sup> . </sup>3 + 4 + 5<sup> . </sup>6<sup> . </sup>7 + 8<sup> . </sup>9 = 1995. </div>
На доске 4×6 клеток стоят две чёрные фишки (Вани) и две белые фишки (Серёжи, см. рис.). Ваня и Серёжа по очереди двигают любую из своих фишек на одну клетку вперёд (по вертикали). Начинает Ваня. Если после хода любого из ребят чёрная фишка окажется между двумя белыми по горизонтали или по диагонали (как на нижних рисунках), она считается "убитой" и снимается с доски. Ваня хочет провести обе свои фишки с верхней горизонтали доски на нижнюю. Может ли Серёжа ему помешать? <img src="/storage/problem-media/103786/problem_103786_img_2.gif">