Олимпиадные задачи по математике для 11 класса - сложность 1-4 с решениями

Через вершину <i>А</i> остроугольного треугольника <i>АВС</i> проведены касательная <i>АК</i> к его описанной окружности, а также биссектрисы <i>АN</i> и <i>AM</i> внутреннего и внешнего углов при вершине <i>А</i> (точки <i>М, K</i> и <i>N</i> лежат на прямой <i>ВС</i>). Докажите, что  <i>MK = KN</i>.

Дан остроугольный треугольник <i>ABC</i>. Прямая, параллельная <i>BC</i>, пересекает стороны <i>AB</i> и <i>AC</i> в точках <i>M</i> и <i>P</i> соответственно. При каком расположении точек <i>M</i> и <i>P</i> радиус окружности, описанной около треугольника <i>BMP</i>, будет наименьшим?

В окружность вписан прямоугольный треугольник <i>ABC</i> с гипотенузой <i>AB</i>. Пусть <i>K</i> – середина дуги <i>BC</i>, не содержащей точку <i>A, N</i> – середина отрезка <i>AC, M</i> – точка пересечения луча <i>KN</i> с окружностью. В точках <i>A</i> и <i>C</i> проведены касательные к окружности, которые пересекаются в точке <i>E</i>. Докажите, что

∠<i>EMK</i> = 90°.

Внутренняя точка <i>M</i> выпуклого четырёхугольника <i>ABCD</i> такова, что треугольники <i>AMB</i> и <i>CMD</i> – равнобедренные с углом величиной 120° при вершине <i>M</i>.

Докажите существование такой точки <i>N</i>, что треугольники <i>BNC</i> и <i>DNA</i> – правильные.

В треугольнике <i>ABC</i> проведены высота <i>AH</i> и биссектриса <i>BE</i>. Известно, что угол <i>BEA</i> равен 45°. Докажите, что угол <i>EHC</i> равен 45°.

Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.

На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек, лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то и четвёртая плоскость также его касается.

Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь этого сечения меньше половины площади грани куба.

Докажите, что если для чисел <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, <i>q</i><sub>1</sub> и <i>q</i><sub>2</sub> выполнено неравенство  (<i>q</i><sub>1</sub> – <i>q</i><sub>2</sub>)² + (<i>p</i><sub>1</sub> – <i>p</i><sub>2</sub>)(<i>p</i><sub>1</sub><i>q</i><sub>2</sub> – <i>p</i><sub>2</sub><i>q</i><sub>1</sub>) < 0,  то квадратные трёхчлены

<i>x</i>² + <i>p</i><sub>1</sub><i>x</i> + <i>q</i><sub>1</sub>  и  <i>x</i&...

В тетраэдре <i>DABC</i>  ∠<i>ACB</i> = ∠<i>ADB</i>,  ребро <i>СD</i> перпендикулярно плоскости <i>АВС</i>. В треугольнике <i>АВС</i> дана высота <i>h</i>, проведённая к стороне <i>АВ</i>, и расстояние <i>d</i> от центра описанной окружности до этой стороны. Найдите <i>CD</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка