Олимпиадные задачи по математике для 9 класса
Клетки таблицы 200×200 окрашены в чёрный и белый цвета так, что чёрных клеток на 404 больше, чем белых.
Докажите, что найдётся квадрат 2×2, в котором число белых клеток нечётно.
Существуют ли 10 таких различных целых чисел, что все суммы, составленные из девяти из них – точные квадраты?
У Ани и Бори было по длинной полосе бумаги. На одной из них была написана буква А, на другой – Б. Каждую минуту один из них (не обязательно по очереди) приписывает справа или слева к слову на своей полосе слово с полосы другого. Докажите, что через сутки слово с Аниной полосы можно будет разрезать на 2 части и переставить их местами так, что получится то же слово, записанное в обратном порядке.
На координатной плоскости расположили треугольник так, что его сдвиги на векторы с целочисленными координатами не перекрываются.
а) Может ли площадь такого треугольника быть больше ½?
б) Найдите наибольшую возможную площадь такого треугольника.
Пусть <i>ABC</i> – остроугольный треугольник, <i>C'</i> и <i>A'</i> – произвольные точки на сторонах <i>AB</i> и <i>BC</i> соответственно, <i>B'</i> – середина стороны <i>AC</i>.
а) Докажите, что площадь треугольника <i>A'B'C'</i> не больше половины площади треугольника <i>ABC</i>.
б) Докажите, что площадь треугольника <i>A'B'C'</i> равна четверти площади треугольника <i>ABC</i> тогда и только тогда, когда хотя бы одна из точек <i>A', C'</i> совпадает с серединой соответствующей стороны.
Пусть <i>M</i> – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит <i>M</i>.
Какое наибольшее число элементов может быть в <i>M</i>?