Олимпиадные задачи из источника «Региональный этап» для 7 класса - сложность 2-5 с решениями
Внутри равнобедренного треугольника <i>ABC</i> (<i>AB = BC</i>) выбрана точка <i>M</i> таким образом, что ∠<i>AMC</i> = 2∠<i>B</i>. На отрезке <i>AM</i> нашлась такая точка <i>K</i>, что
∠<i>BKM</i> = ∠<i>B</i>. Докажите, что <i>BK = KM + MC</i>.
Существуют ли такие простые числа <i>p</i><sub>1</sub>, <i>p</i><sub>2</sub>, ..., <i>p</i><sub>2007</sub>, что <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_2.gif"> делится на <i>p</i><sub>2</sub>, <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_3.gif"> делится на <i>p</i><sub>3</sub>, ..., <img align="absmiddle" src="/storage/problem-media/111788/problem_111788_img_4.gif"> делится на <i>p</i><sub>1</sub>?
Петя задумал натуральное число и для каждой пары его цифр выписал на доску их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя?
В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что все восемь отрезков равны.