Олимпиадные задачи из источника «11 Класс» для 8 класса

В 25 коробках лежат шарики нескольких цветов. Известно, что при любом <i>k</i>  (1 ≤ <i>k</i> ≤ 25)  в любых <i>k</i> коробках лежат шарики ровно  <i>k</i> + 1  различных цветов. Докажите, что шарики одного из цветов лежат во всех коробках.

На плоскости отмечено несколько точек, каждая покрашена в синий, желтый или зеленый цвет. На любом отрезке, соединяющем одноцветные точки, нет точек этого же цвета, но есть хотя бы одна другого цвета. Каково максимально возможное число всех точек?

При каких натуральных <i>n</i> найдутся такие целые <i>a, b, c</i>, что их сумма равна нулю, а число  <i>a<sup>n</sup> + b<sup>n</sup> + c<sup>n</sup></i>  – простое?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка