Олимпиадные задачи из источника «1999-2000» для 11 класса - сложность 4 с решениями
1999-2000
НазадВ стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более <i>N</i> различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на 2<i>N</i> + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
На прямоугольном столе лежат равные картонные квадраты<i> n </i>различных цветов со сторонами, параллельными сторонам стола. Если рассмотреть любые<i> n </i>квадратов различных цветов, то какие-нибудь два из них можно прибить к столу одним гвоздем. Докажите, что все квадраты некоторого цвета можно прибить к столу2<i>n-</i>2гвоздями.
Клетки таблицы 100×100 окрашены в 4 цвета так, что в каждой строке и в каждом столбце ровно по 25 клеток каждого цвета.
Докажите, что найдутся две строки и два столбца, все четыре клетки на пересечении которых окрашены в разные цвета.
Дана последовательность неотрицательных чисел<i> a<sub>1</sub> </i>,<i> a<sub>2</sub> </i>,<i> a<sub>n</sub> </i>. Для любого<i> k </i>от 1 до<i> n </i>обозначим через<i> m<sub>k</sub> </i>величину <center><i>
<img src="/storage/problem-media/109710/problem_109710_img_2.gif"><sub>l=</sub></i>1<i>,</i>2<i>,..,k <img src="/storage/problem-media/109710/problem_109710_img_3.gif">.
</i></center> Докажите, что при любом<i> α></i>0число тех<i> k </i>, для которых<i> m<sub>k</sub>>α </i>, меньше, чем<i>a<sub>1</sub>+...
На координатной плоскости дан выпуклый пятиугольник<i> ABCDE </i>с вершинами в целых точках. Докажите, что внутри или на границе пятиугольника<i> A<sub>1</sub>B<sub>1</sub>C<sub>1</sub>D<sub>1</sub>E<sub>1</sub> </i><i> (см. рис.) </i>есть хотя бы одна целая точка. <center><i> <img src="/storage/problem-media/109709/problem_109709_img_2.gif"> </i></center>
На стороне<i> AB </i>треугольника<i> ABC </i>выбрана точка<i> D </i>. Окружность, описанная около треугольника<i> BCD </i>, пересекает сторону<i> AC </i>в точке<i> M </i>, а окружность, описанная около треугольника<i> ACD </i>, пересекает сторону<i> BC </i>в точке<i> N </i>(точки<i> M </i>и<i> N </i>отличны от точки<i> C </i>). Пусть<i> O </i>– центр описанной окружности треугольника<i> CMN </i>. Докажите, что прямая<i> OD </i>перпендикулярна стороне<i> AB </i>.
Четырёхугольник <i> ABCD </i> описан около окружности ω. Продолжения сторон <i>AB</i> и <i>CD</i> пересекаются в точке <i>O</i>. Окружность ω<sub>1</sub> касается стороны <i>BC</i> в точке <i>K</i> и продолжений сторон <i>AB</i> и <i>CD</i>; окружность ω<sub>2</sub> касается стороны <i>AD</i> в точке <i>L</i> и продолжений сторон <i>AB</i> и <i>CD</i>. Известно, что точки <i>O, K</i> и <i>L</i> лежат на одной прямой. Докажите, что середины сторон <i>BC, AD</i> и центр окружности ω лежат на одной прямой.