Олимпиадные задачи из источника «Региональный этап» - сложность 4 с решениями
На выборах в городскую Думу каждый избиратель, если он приходит на выборы, отдает голос за себя (если он является кандидатом) и за тех кандидатов, которые являются его друзьями. Прогноз социологической службы мэрии считается хорошим, если в нем правильно предсказано количество голосов, поданных хотя бы за одного из кандидатов, и нехорошим в противном случае. Докажите, что при любом прогнозе избиратели могут так явиться на выборы, что этот прогноз окажется нехорошим.
Имеется квадрат клетчатой бумаги размером 102×102 клетки и связная фигура неизвестной формы, состоящая из 101 клетки. Какое наибольшее число таких фигур можно с гарантией вырезать из этого квадрата? Фигура, составленная из клеток, называется связной, если любые две ее клетки можно соединить цепочкой ее клеток, в которой любые две соседние клетки имеют общую сторону.
Куб со стороной<i> n </i>(<i> n<img src="/storage/problem-media/109948/problem_109948_img_2.gif"></i>3) разбит перегородками на единичные кубики. Какое минимальное число перегородок между единичными кубиками нужно удалить, чтобы из каждого кубика можно было добраться до границы куба?
Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)
В последовательности натуральных чисел {<i>a<sub>n</sub></i>}, <i>n</i> = 1, 2, ..., каждое натуральное число встречается хотя бы один раз, и для любых различных <i>n</i> и <i>m</i> выполнено неравенство <img align="absmiddle" src="/storage/problem-media/109941/problem_109941_img_2.gif"> Докажите, что тогда |<i>a<sub>n</sub> – n</i>| < 2000000 для всех натуральных <i>n</i>.